Download citation
Download citation
link to html
The title binuclear ReI–thiol­ate complex, [Re2(C6H5S)(C10H8N2)2(CO)6]ClO4·0.5CH2Cl2, was isolated from the reaction between [Re(bpy)(CO)3](SC6H5) and [Cu22-dppm)2(MeCN)4](ClO4)2 (bpy is bi­pyridine and dppm is di­phenyl­phosphino­methane). The two rhenium–di­imine moieties are bridged by one S-donor and each Re atom adopts a distorted octahedral geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802017129/ob6174sup1.cif
Contains datablocks II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802017129/ob6174IIsup2.hkl
Contains datablock II

CCDC reference: 198318

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.015 Å
  • Disorder in solvent or counterion
  • R factor = 0.038
  • wR factor = 0.109
  • Data-to-parameter ratio = 13.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ....................... 11.00 Perc.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

There has been increasing interest in designing polymetallic complexes with mixed diimine and thiolate ligands owing to the unique optical and optoelectronic properties (Yam et al., 2000; Tang et al., 2002). It is well known that thiolates as versatile bridging ligands could exhibit various bonding modes to produce metal cluster complexes with diverse structural topologies (Su et al., 1998). We describe here a dinuclear rhenium(I) complex, [{Re(bpy)(CO)3}2(µ-SC6H5)]ClO4·0.5CH2Cl2, (II), which resulted from the self-assembly between the metal components {Re(bpy)(CO)3}(SC6H5), (I), and [Cu22-dppm)2(MeCN)4](ClO4)2.

A perspective drawing of the complex cation of (II) with the atomic numbering scheme is shown in Fig. 1, and selected bonding parameters are given in Table 1. The two rehnium–diimne moieties are bridged by the S-donor from the benzenethiolate ligand, with an Re2—S1—Re1 bite angle of 124.35 (8)°. The three carbonyl ligands at each Re atom are arranged in a facial configuration. Each Re atom adopts a slightly distorted octahedral geormetry, with the S1—Re1—C43 and S1—Re2—C46 bond angles being 174.8 (2) and 175.8 (3)°, respectively. The planes of the two bipyridyl ligands and the phenyl ring of the bridging thiolate ligand show a stacked conformation, with dihedral angles between the idealized planes of the two bipyridyl units and the phenyl ring of 14.1 (2) and 16.1 (3)°. Because of the steric effects of each chelating bipyridyl ligand, the N2—Re1—N1 [75.3 (2)°] and N4—Re2—N3 [74.2 (3)°] angles are far from 90° (Yam et al., 1995, 1996). The average bond distances of Re—S [2.526 (2) Å] and Re—C [1.918 (9) Å] are found to be comparable to those observed in [Re(CO)3SCH3]4 (Abel et al., 1970; Yam et al., 1997).

Experimental top

The starting material {Re(bpy)(CO)3}(µ-SC6H5), (I), was synthesized by modification of literature procedures (Yam et al., 1997) using a large excess of benzenethiolate to give (I) as a red–orange solid in good yield. Reaction between (I) and [Cu22-dppm)2(MeCN)4](ClO4)2 (Diez et al., 1987) with an equimolar ratio in dichloromethane was carried out under anaerobic conditions for 12 h, where a color change from red into yellow–orange was observed. Well shaped yellow crystals of (II) suitable for X-ray diffraction analysis were grown by layering of diethyl ether onto the concentrated solution.

Refinement top

The positions of the H atoms were genetared geometrically (C—H bond length fixed at 0.96 Å), assigned isotropic displacement parameters and allowed to ride on their respective parent C atoms before the final cycle of least-squares refinement. The dichloromethane molecule exists near the center of symmetry and atom C01 has two possible positions with occupancies of 50%.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the complex cation of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
(µ-benzenethiolato){Bis((bipyridine)(tricarbonyl))} dirhenium(I)perchloratedichloromethanesolvate top
Crystal data top
[Re2(C6H5S)(C10H8N2)2(CO)6]ClO4·0.5CH2Cl2Z = 2
Mr = 1103.90F(000) = 1050
Triclinic, P1Dx = 2.068 Mg m3
a = 9.7014 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3257 (3) ÅCell parameters from 6144 reflections
c = 17.8823 (5) Åθ = 1.1–25.1°
α = 85.994 (1)°µ = 7.10 mm1
β = 86.487 (1)°T = 293 K
γ = 83.405 (1)°Prism, yellow
V = 1772.57 (9) Å30.78 × 0.36 × 0.34 mm
Data collection top
Siemens SMART CCD
diffractometer
6185 independent reflections
Radiation source: fine-focus sealed tube5245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.1°, θmin = 1.1°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.040, Tmax = 0.090k = 1212
9243 measured reflectionsl = 1621
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0571P)2 + 6.9595P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
6185 reflectionsΔρmax = 1.35 e Å3
470 parametersΔρmin = 2.22 e Å3
2 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (3)
Crystal data top
[Re2(C6H5S)(C10H8N2)2(CO)6]ClO4·0.5CH2Cl2γ = 83.405 (1)°
Mr = 1103.90V = 1772.57 (9) Å3
Triclinic, P1Z = 2
a = 9.7014 (3) ÅMo Kα radiation
b = 10.3257 (3) ŵ = 7.10 mm1
c = 17.8823 (5) ÅT = 293 K
α = 85.994 (1)°0.78 × 0.36 × 0.34 mm
β = 86.487 (1)°
Data collection top
Siemens SMART CCD
diffractometer
6185 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
5245 reflections with I > 2σ(I)
Tmin = 0.040, Tmax = 0.090Rint = 0.027
9243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.13Δρmax = 1.35 e Å3
6185 reflectionsΔρmin = 2.22 e Å3
470 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.23301 (3)0.35079 (3)0.118705 (16)0.03192 (13)
Re20.15717 (3)0.76402 (3)0.183675 (17)0.03283 (13)
Cl10.7755 (2)0.9347 (3)0.41867 (13)0.0577 (6)
Cl010.9287 (7)0.5067 (7)0.4318 (3)0.165 (2)
S10.3060 (2)0.54781 (19)0.17589 (12)0.0395 (5)
O10.9039 (8)0.9347 (13)0.4489 (5)0.103 (3)
O20.7146 (19)1.0619 (16)0.4113 (7)0.185 (8)
O30.6930 (14)0.8636 (16)0.4680 (6)0.153 (6)
O40.7887 (10)0.8881 (11)0.3464 (5)0.101 (3)
O410.3514 (8)0.4635 (8)0.0321 (4)0.067 (2)
O420.0584 (7)0.4842 (8)0.0873 (4)0.066 (2)
O430.1710 (7)0.1101 (7)0.0409 (4)0.0607 (18)
O440.1020 (8)0.6347 (8)0.2383 (5)0.076 (2)
O450.0975 (9)0.7444 (8)0.0182 (4)0.075 (2)
O460.0191 (8)1.0292 (7)0.1803 (5)0.069 (2)
N10.1775 (7)0.2675 (6)0.2301 (4)0.0349 (14)
N20.4270 (7)0.2563 (6)0.1601 (4)0.0333 (14)
N30.2380 (7)0.7876 (6)0.2920 (4)0.0375 (15)
N40.3602 (7)0.8304 (6)0.1593 (4)0.0392 (16)
C10.0491 (10)0.2718 (10)0.2612 (5)0.049 (2)
H1B0.02290.31670.23460.059*
C011.048 (3)0.4087 (18)0.4885 (11)0.129 (13)0.50
H01A1.01240.32620.50370.155*0.50
H01B1.13600.39060.46050.155*0.50
C20.0169 (11)0.2133 (11)0.3305 (6)0.060 (3)
H2B0.07430.21990.35030.072*
C30.1206 (12)0.1458 (11)0.3695 (6)0.061 (3)
H3A0.10130.10390.41610.074*
C40.2552 (11)0.1402 (9)0.3390 (5)0.052 (2)
H4A0.32740.09550.36550.062*
C50.2834 (9)0.2011 (8)0.2687 (5)0.0406 (19)
C60.4218 (9)0.2005 (7)0.2310 (5)0.0386 (18)
C70.5433 (10)0.1496 (8)0.2667 (6)0.049 (2)
H7A0.53910.11340.31580.059*
C80.6690 (10)0.1549 (10)0.2265 (6)0.057 (3)
H8A0.75060.11860.24810.068*
C90.6750 (9)0.2126 (10)0.1556 (6)0.053 (2)
H9A0.76010.21830.12930.064*
C100.5522 (9)0.2626 (8)0.1234 (5)0.043 (2)
H10A0.55610.30170.07500.052*
C110.1649 (11)0.7839 (10)0.3581 (5)0.055 (2)
H11A0.07080.77370.35880.066*
C120.2240 (12)0.7948 (11)0.4246 (5)0.060 (3)
H12A0.16970.79330.46930.072*
C130.3629 (11)0.8079 (10)0.4255 (6)0.058 (3)
H13A0.40450.81320.47060.070*
C140.4390 (12)0.8129 (10)0.3583 (6)0.057 (3)
H14A0.53350.82170.35730.068*
C150.3748 (9)0.8049 (8)0.2923 (5)0.0404 (19)
C160.4443 (8)0.8242 (7)0.2171 (5)0.0368 (18)
C170.5850 (10)0.8386 (10)0.2051 (6)0.056 (2)
H17A0.64200.83290.24540.067*
C180.6391 (11)0.8614 (11)0.1329 (7)0.068 (3)
H18A0.73330.86920.12400.082*
C190.5522 (10)0.8725 (10)0.0741 (6)0.056 (3)
H19A0.58650.89070.02520.068*
C200.4139 (10)0.8564 (9)0.0886 (6)0.050 (2)
H20A0.35560.86360.04880.060*
C310.3972 (9)0.5039 (8)0.2596 (5)0.042 (2)
C320.5397 (10)0.5029 (8)0.2540 (6)0.048 (2)
H32A0.58460.52380.20810.057*
C330.6151 (12)0.4711 (12)0.3166 (7)0.071 (3)
H33A0.71090.47300.31350.085*
C340.5480 (15)0.4364 (13)0.3838 (7)0.080 (4)
H34A0.59990.41150.42550.096*
C350.4066 (15)0.4378 (12)0.3906 (6)0.073 (3)
H35A0.36210.41610.43660.088*
C360.3311 (11)0.4722 (9)0.3276 (6)0.054 (2)
H36A0.23490.47390.33120.064*
C410.3039 (9)0.4233 (9)0.0241 (5)0.043 (2)
C420.0515 (9)0.4352 (8)0.0971 (4)0.0389 (18)
C430.1935 (8)0.2010 (9)0.0702 (5)0.0421 (19)
C440.0066 (9)0.6835 (9)0.2178 (5)0.047 (2)
C450.1166 (10)0.7502 (9)0.0816 (5)0.047 (2)
C460.0491 (9)0.9316 (8)0.1822 (5)0.0427 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0340 (2)0.0352 (2)0.02719 (19)0.00303 (13)0.00627 (13)0.00376 (13)
Re20.03205 (19)0.0353 (2)0.0314 (2)0.00023 (13)0.00579 (13)0.00696 (13)
Cl10.0447 (12)0.0912 (19)0.0398 (12)0.0113 (12)0.0107 (10)0.0097 (12)
Cl010.169 (5)0.201 (6)0.135 (5)0.036 (5)0.056 (4)0.022 (4)
S10.0456 (11)0.0343 (10)0.0392 (11)0.0019 (9)0.0140 (9)0.0086 (8)
O10.055 (5)0.206 (11)0.056 (5)0.043 (6)0.012 (4)0.012 (6)
O20.259 (18)0.184 (13)0.089 (8)0.119 (13)0.054 (10)0.047 (9)
O30.133 (10)0.256 (17)0.092 (8)0.126 (11)0.006 (7)0.010 (9)
O40.099 (7)0.144 (8)0.065 (6)0.000 (6)0.023 (5)0.047 (6)
O410.061 (4)0.091 (5)0.048 (4)0.022 (4)0.005 (3)0.016 (4)
O420.048 (4)0.081 (5)0.069 (5)0.013 (4)0.026 (4)0.014 (4)
O430.067 (4)0.051 (4)0.070 (5)0.017 (3)0.001 (4)0.029 (4)
O440.065 (5)0.096 (6)0.072 (5)0.038 (4)0.012 (4)0.015 (4)
O450.093 (6)0.097 (6)0.038 (4)0.003 (5)0.032 (4)0.005 (4)
O460.062 (4)0.052 (4)0.087 (6)0.021 (4)0.006 (4)0.011 (4)
N10.039 (4)0.037 (3)0.029 (3)0.005 (3)0.000 (3)0.006 (3)
N20.038 (4)0.028 (3)0.034 (4)0.001 (3)0.005 (3)0.001 (3)
N30.043 (4)0.037 (4)0.032 (4)0.001 (3)0.004 (3)0.011 (3)
N40.036 (4)0.034 (3)0.048 (4)0.001 (3)0.007 (3)0.009 (3)
C10.047 (5)0.066 (6)0.037 (5)0.017 (4)0.003 (4)0.005 (4)
C010.13 (3)0.17 (4)0.09 (2)0.02 (3)0.01 (2)0.02 (2)
C20.060 (6)0.074 (7)0.049 (6)0.024 (5)0.004 (5)0.009 (5)
C30.080 (7)0.069 (7)0.037 (5)0.024 (6)0.012 (5)0.003 (5)
C40.071 (6)0.046 (5)0.037 (5)0.009 (5)0.007 (5)0.006 (4)
C50.055 (5)0.038 (4)0.031 (4)0.011 (4)0.011 (4)0.002 (3)
C60.044 (5)0.030 (4)0.041 (5)0.000 (3)0.006 (4)0.005 (3)
C70.053 (5)0.039 (5)0.053 (6)0.004 (4)0.023 (4)0.006 (4)
C80.047 (5)0.054 (6)0.069 (7)0.005 (4)0.020 (5)0.001 (5)
C90.036 (5)0.064 (6)0.059 (6)0.001 (4)0.001 (4)0.015 (5)
C100.044 (5)0.046 (5)0.039 (5)0.002 (4)0.002 (4)0.011 (4)
C110.059 (6)0.070 (6)0.036 (5)0.001 (5)0.005 (4)0.011 (4)
C120.077 (7)0.071 (7)0.032 (5)0.008 (6)0.005 (5)0.017 (5)
C130.068 (7)0.070 (7)0.038 (5)0.010 (5)0.013 (5)0.007 (5)
C140.065 (6)0.053 (6)0.057 (6)0.010 (5)0.019 (5)0.011 (5)
C150.046 (5)0.035 (4)0.043 (5)0.002 (4)0.013 (4)0.016 (4)
C160.040 (4)0.031 (4)0.041 (5)0.008 (3)0.005 (4)0.007 (3)
C170.044 (5)0.057 (6)0.071 (7)0.010 (4)0.009 (5)0.014 (5)
C180.046 (6)0.072 (7)0.087 (9)0.013 (5)0.008 (6)0.013 (6)
C190.054 (6)0.066 (6)0.046 (6)0.009 (5)0.022 (5)0.000 (5)
C200.052 (5)0.046 (5)0.051 (6)0.002 (4)0.004 (4)0.006 (4)
C310.049 (5)0.034 (4)0.043 (5)0.003 (4)0.020 (4)0.004 (4)
C320.049 (5)0.038 (5)0.056 (6)0.002 (4)0.012 (4)0.005 (4)
C330.059 (7)0.075 (8)0.083 (9)0.006 (6)0.033 (6)0.011 (6)
C340.092 (9)0.086 (8)0.068 (8)0.006 (7)0.056 (7)0.007 (6)
C350.102 (10)0.076 (8)0.043 (6)0.015 (7)0.019 (6)0.002 (5)
C360.064 (6)0.052 (5)0.050 (6)0.015 (5)0.017 (5)0.005 (4)
C410.037 (4)0.051 (5)0.044 (5)0.005 (4)0.006 (4)0.003 (4)
C420.046 (5)0.043 (5)0.031 (4)0.005 (4)0.014 (4)0.007 (3)
C430.033 (4)0.049 (5)0.044 (5)0.005 (4)0.006 (4)0.012 (4)
C440.044 (5)0.052 (5)0.046 (5)0.009 (4)0.003 (4)0.010 (4)
C450.050 (5)0.041 (5)0.050 (6)0.002 (4)0.015 (4)0.002 (4)
C460.039 (4)0.040 (5)0.050 (5)0.002 (4)0.007 (4)0.009 (4)
Geometric parameters (Å, º) top
Re1—C431.912 (9)C3—H3A0.9300
Re1—C411.921 (9)C4—C51.392 (12)
Re1—C421.922 (9)C4—H4A0.9300
Re1—N22.165 (6)C5—C61.464 (12)
Re1—N12.175 (6)C6—C71.406 (12)
Re1—S12.529 (2)C7—C81.382 (14)
Re2—C451.909 (9)C7—H7A0.9300
Re2—C461.917 (8)C8—C91.364 (14)
Re2—C441.924 (9)C8—H8A0.9300
Re2—N42.169 (7)C9—C101.385 (13)
Re2—N32.173 (7)C9—H9A0.9300
Re2—S12.523 (2)C10—H10A0.9300
Cl1—O21.378 (13)C11—C121.368 (14)
Cl1—O31.385 (11)C11—H11A0.9300
Cl1—O11.387 (8)C12—C131.372 (15)
Cl1—O41.403 (8)C12—H12A0.9300
Cl01—C01i1.763 (5)C13—C141.372 (14)
Cl01—C011.766 (5)C13—H13A0.9300
S1—C311.791 (8)C14—C151.380 (12)
O41—C411.151 (11)C14—H14A0.9300
O42—C421.144 (10)C15—C161.479 (12)
O43—C431.154 (10)C16—C171.392 (12)
O44—C441.133 (11)C17—C181.378 (16)
O45—C451.167 (11)C17—H17A0.9300
O46—C461.140 (10)C18—C191.379 (16)
N1—C11.331 (11)C18—H18A0.9300
N1—C51.364 (11)C19—C201.377 (13)
N2—C101.351 (11)C19—H19A0.9300
N2—C61.357 (10)C20—H20A0.9300
N3—C111.341 (11)C31—C361.376 (14)
N3—C151.359 (11)C31—C321.379 (13)
N4—C161.349 (11)C32—C331.373 (14)
N4—C201.359 (12)C32—H32A0.9300
C1—C21.374 (13)C33—C341.377 (18)
C1—H1B0.9300C33—H33A0.9300
C01—Cl01i1.763 (5)C34—C351.368 (18)
C01—H01A0.9700C34—H34A0.9300
C01—H01B0.9700C35—C361.385 (14)
C2—C31.357 (16)C35—H35A0.9300
C2—H2B0.9300C36—H36A0.9300
C3—C41.380 (15)
C43—Re1—C4189.5 (4)N1—C5—C6115.4 (7)
C43—Re1—C4289.6 (3)C4—C5—C6124.8 (8)
C41—Re1—C4289.2 (4)N2—C6—C7121.5 (8)
C43—Re1—N293.9 (3)N2—C6—C5116.1 (7)
C41—Re1—N298.5 (3)C7—C6—C5122.4 (8)
C42—Re1—N2171.6 (3)C8—C7—C6117.9 (9)
C43—Re1—N193.3 (3)C8—C7—H7A121.0
C41—Re1—N1173.3 (3)C6—C7—H7A121.0
C42—Re1—N197.0 (3)C9—C8—C7120.8 (9)
N2—Re1—N175.3 (2)C9—C8—H8A119.6
C43—Re1—S1174.8 (2)C7—C8—H8A119.6
C41—Re1—S186.6 (3)C8—C9—C10118.8 (9)
C42—Re1—S193.9 (2)C8—C9—H9A120.6
N2—Re1—S183.18 (17)C10—C9—H9A120.6
N1—Re1—S190.15 (17)N2—C10—C9122.1 (8)
C45—Re2—C4689.2 (4)N2—C10—H10A118.9
C45—Re2—C4490.7 (4)C9—C10—H10A118.9
C46—Re2—C4489.5 (4)N3—C11—C12122.2 (10)
C45—Re2—N496.0 (3)N3—C11—H11A118.9
C46—Re2—N498.1 (3)C12—C11—H11A118.9
C44—Re2—N4169.9 (3)C11—C12—C13120.3 (9)
C45—Re2—N3170.2 (3)C11—C12—H12A119.9
C46—Re2—N393.0 (3)C13—C12—H12A119.9
C44—Re2—N398.9 (3)C12—C13—C14118.3 (9)
N4—Re2—N374.2 (3)C12—C13—H13A120.9
C45—Re2—S187.5 (3)C14—C13—H13A120.9
C46—Re2—S1175.8 (3)C13—C14—C15119.7 (10)
C44—Re2—S193.2 (3)C13—C14—H14A120.2
N4—Re2—S179.59 (18)C15—C14—H14A120.2
N3—Re2—S189.80 (18)N3—C15—C14121.7 (9)
O2—Cl1—O3108.8 (11)N3—C15—C16114.7 (7)
O2—Cl1—O1108.3 (10)C14—C15—C16123.4 (8)
O3—Cl1—O1108.6 (7)N4—C16—C17121.2 (8)
O2—Cl1—O4106.7 (7)N4—C16—C15115.0 (7)
O3—Cl1—O4112.6 (8)C17—C16—C15123.7 (8)
O1—Cl1—O4111.7 (6)C18—C17—C16119.4 (10)
C01i—Cl01—C0171.5 (7)C18—C17—H17A120.3
C31—S1—Re2111.8 (3)C16—C17—H17A120.3
C31—S1—Re1112.1 (3)C17—C18—C19119.4 (9)
Re2—S1—Re1124.35 (8)C17—C18—H18A120.3
C1—N1—C5118.5 (7)C19—C18—H18A120.3
C1—N1—Re1125.1 (6)C20—C19—C18119.2 (9)
C5—N1—Re1116.4 (5)C20—C19—H19A120.4
C10—N2—C6118.8 (7)C18—C19—H19A120.4
C10—N2—Re1124.2 (5)N4—C20—C19122.0 (9)
C6—N2—Re1116.6 (5)N4—C20—H20A119.0
C11—N3—C15117.8 (8)C19—C20—H20A119.0
C11—N3—Re2125.4 (6)C36—C31—C32120.0 (8)
C15—N3—Re2116.8 (5)C36—C31—S1122.8 (7)
C16—N4—C20118.8 (7)C32—C31—S1117.2 (7)
C16—N4—Re2116.7 (6)C33—C32—C31119.8 (10)
C20—N4—Re2123.5 (6)C33—C32—H32A120.1
N1—C1—C2123.6 (9)C31—C32—H32A120.1
N1—C1—H1B118.2C32—C33—C34119.6 (11)
C2—C1—H1B118.2C32—C33—H33A120.2
Cl01i—C01—Cl01108.5 (7)C34—C33—H33A120.2
Cl01i—C01—H01A110.0C35—C34—C33121.4 (10)
Cl01—C01—H01A110.0C35—C34—H34A119.3
Cl01i—C01—H01B110.0C33—C34—H34A119.3
Cl01—C01—H01B110.0C34—C35—C36118.6 (11)
H01A—C01—H01B108.4C34—C35—H35A120.7
C3—C2—C1118.8 (10)C36—C35—H35A120.7
C3—C2—H2B120.6C31—C36—C35120.5 (10)
C1—C2—H2B120.6C31—C36—H36A119.7
C2—C3—C4119.0 (9)C35—C36—H36A119.7
C2—C3—H3A120.5O41—C41—Re1177.2 (8)
C4—C3—H3A120.5O42—C42—Re1177.1 (8)
C3—C4—C5120.4 (10)O43—C43—Re1179.3 (8)
C3—C4—H4A119.8O44—C44—Re2179.2 (10)
C5—C4—H4A119.8O45—C45—Re2176.8 (9)
N1—C5—C4119.7 (8)O46—C46—Re2177.5 (8)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Re2(C6H5S)(C10H8N2)2(CO)6]ClO4·0.5CH2Cl2
Mr1103.90
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.7014 (3), 10.3257 (3), 17.8823 (5)
α, β, γ (°)85.994 (1), 86.487 (1), 83.405 (1)
V3)1772.57 (9)
Z2
Radiation typeMo Kα
µ (mm1)7.10
Crystal size (mm)0.78 × 0.36 × 0.34
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.040, 0.090
No. of measured, independent and
observed [I > 2σ(I)] reflections
9243, 6185, 5245
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.13
No. of reflections6185
No. of parameters470
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.35, 2.22

Computer programs: SMART (Siemens, 1996), SMART and SAINT (Siemens, 1994), XPREP in SHELXTL (Siemens, 1994), SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Re1—C431.912 (9)Re2—C451.909 (9)
Re1—C411.921 (9)Re2—C461.917 (8)
Re1—C421.922 (9)Re2—C441.924 (9)
Re1—N22.165 (6)Re2—N42.169 (7)
Re1—N12.175 (6)Re2—N32.173 (7)
Re1—S12.529 (2)Re2—S12.523 (2)
N2—Re1—N175.3 (2)C46—Re2—S1175.8 (3)
C43—Re1—S1174.8 (2)C44—Re2—S193.2 (3)
C41—Re1—S186.6 (3)N4—Re2—S179.59 (18)
C42—Re1—S193.9 (2)N3—Re2—S189.80 (18)
N2—Re1—S183.18 (17)C31—S1—Re2111.8 (3)
N1—Re1—S190.15 (17)C31—S1—Re1112.1 (3)
N4—Re2—N374.2 (3)Re2—S1—Re1124.35 (8)
C45—Re2—S187.5 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds