Download citation
Download citation
link to html
The structure of the title compound, (C10H16N2)[CuCl4], comprises two crystallographically non-equivalent tetrahedral [CuCl4]2- anions, each of which is linked to two doubly protonated nicotinium cations via hydrogen bonds. There are two different types of hydrogen-bonding interactions present, namely (i) the protonated pyridinium groups exclusively form bifurcated hydrogen bonds to two cis-Cl atoms of both [CuCl4]2- units and (ii) the protonated pyrrolidinium groups exclusively form a two-center hydrogen bond with a chloride of both [CuCl4]2- units.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802017154/tk6078sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802017154/tk6078Isup2.hkl
Contains datablock I

CCDC reference: 198315

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.011 Å
  • R factor = 0.038
  • wR factor = 0.099
  • Data-to-parameter ratio = 14.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.586 Tmax scaled 0.579 Tmin scaled 0.388 REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.50 From the CIF: _reflns_number_total 4302 Count of symmetry unique reflns 3521 Completeness (_total/calc) 122.18% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 781 Fraction of Friedel pairs measured 0.222 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

Considerable interest has been shown in recent years in tetrahalocuprate complexes containing various organic counter-cations (Desjardins et al., 1983; Halvorson et al., 1990; McDonald et al., 1988; Straatman et al., 1984). It is known that their hydrogen-bonding interactions (Glenn et al., 1995; Marzotto et al., 2001) and π-interactions between the aromatic rings of the organic cations (Luque et al., 2002; Sertucha et al., 1998) stabilize their crystal structures. These types of interactions control molecular recognition and self-assembly processes, and exercise important effects on solid-state structure and the properties of many compounds relevant to biological and material sciences (Desiraju & Steiner, 1999; Robinson et al., 2000). In this work, we report the preparation and crystal structure of the title compound, (I). The doubly protonated nicotinium cation, [C10H16N2H2]2+, contains two sites capable of forming hydrogen-bonding interactions with Cl atoms of the [CuCl4]2− anion and the pyridine ring is capable of establishing a π-interaction in the crystalline state.

The crystal structure (Fig. 1) of (I) comprises two nicotinium cations and two discrete [CuCl4]2− anions held together by N—H···Cl hydrogen bonds. The [CuCl4]2− anions are crystallographically non-equivalent and are approximately D2 d flattened as a result of hydrogen-bonding interactions with nicotinium cations. The two nicotinium cations are protonated at the atoms N1 and N9, and N13 and N21. The protonated pyridinium N atoms exclusively form a rare three-center hydrogen bond (bifurcated hydrogen bond) with two cis-Cl atoms of both [CuCl4]2− units. On the other hand, each of the protonated pyrrolidinium N atoms exclusively forms a common two-center hydrogen bond with a Cl atom of a [CuCl4]2− unit. As a result, three Cl atoms of each [CuCl4]2− anion participate in the hydrogen bonding with nicotinium cations. The hydrogen-bonding interactions are shown in Fig. 2.

The Cu1 and Cu2 centres are each coordinated by four Cl atoms, at average distances of 2.2465 (18) and 2.2390 (19) Å, respectively. These values are close to those observed in similar complexes (Halvorson et al., 1990). The mean N···Cl distance of about 3.24 Å for the three-center hydrogen bond in both of the Cu1 and Cu2 sites is appreciably shorter than the mean distance of 3.40 Å suggested by previous works (Glenn et al., 1995) for this type of hydrogen bond. There are no important bonding interactions among the tetrachlorocuprate anionic units, with the nearest non-bonded Cu···Cl distance in the unit cell being 5.577 (2) Å and the nearest Cu···Cu distance being 7.691 (1) Å. The nearest Cl···Cl contact distance of 4.375 (3) Å is considerably longer than the sum of their van der Waals radii. The aromatic pyridine rings of the cations are nearly perfectly planar, but the pyridine rings stacked in the parallel fashion are well separated from each other by the cell-unit distance, making a π-interaction among them impossible.

Experimental top

(S)-(-)-Nicotine (0.24 g, 1.5 mmol) dissolved in an ethanol-triethylorthoformate mixture (15.0 ml; 5:1 v/v) was added to an excess of concentrated HCl. To this solution, 1.0 mmol of anhydrous CuCl2 dissolved in an ethanol-triethlyorthoformate mixture (5.0 ml; 5:1 v/v) was added. The resulting solution was stirred vigorously for 2 h at room temperature and was then refrigerated overnight. The bright yellow precipitate which appeared was collected by filtration and washed with cold absolute ethanol and dried under vacuum. The yield of the product was 0.28 g (76.03%) based on CuCl2. The orange crystals used for analysis were obtained by recrystallization from absolute ethanol. Analysis calculated for C10H16Cl4CuN2: C 32.50, H 4.36, N 7.58%; found: C 32.70, H 4.39, N 7.63%.

Refinement top

The positional parameters of the H atoms were calculated geometrically (C—H = 0.96–0.98 Å and N—H = 0.86–0.91 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(CH, CH2, and NH) or 1.5Ueq(CH3). Intensity statistics suggested non-centrosymmetric space group P1 with |E2-1| = 0.725 and proved correct from the successful refinement.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) diagram of (I) showing the atom-numbering scheme and 30% probability ellipsoids.
[Figure 2] Fig. 2. A view of hydrogen-bonding mode in the (010) plane of the unit cell, showing a selected atom-numbering scheme and 30% probability ellipsoids (Farrugia, 1997).
Nicotinium tetrachlorocuprate(II) top
Crystal data top
(C10H16N2)[CuCl4]Z = 2
Mr = 369.59F(000) = 374
Triclinic, P1Dx = 1.602 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6919 (8) ÅCell parameters from 50 reflections
b = 8.1526 (9) Åθ = 5.0–15.3°
c = 12.2337 (15) ŵ = 2.10 mm1
α = 87.249 (9)°T = 293 K
β = 88.694 (8)°Block, orange
γ = 89.414 (7)°0.50 × 0.45 × 0.26 mm
V = 766.05 (15) Å3
Data collection top
Bruker P4
diffractometer
3327 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
2θ/ω scansh = 19
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.663, Tmax = 0.988l = 1515
4302 measured reflections3 standard reflections every 97 reflections
4302 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.6259P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.70 e Å3
4302 reflectionsΔρmin = 0.71 e Å3
290 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.0251 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 781 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.037 (17)
Crystal data top
(C10H16N2)[CuCl4]γ = 89.414 (7)°
Mr = 369.59V = 766.05 (15) Å3
Triclinic, P1Z = 2
a = 7.6919 (8) ÅMo Kα radiation
b = 8.1526 (9) ŵ = 2.10 mm1
c = 12.2337 (15) ÅT = 293 K
α = 87.249 (9)°0.50 × 0.45 × 0.26 mm
β = 88.694 (8)°
Data collection top
Bruker P4
diffractometer
3327 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.663, Tmax = 0.9883 standard reflections every 97 reflections
4302 measured reflections intensity decay: none
4302 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.70 e Å3
S = 1.05Δρmin = 0.71 e Å3
4302 reflectionsAbsolute structure: Flack (1983), 781 Friedel pairs
290 parametersAbsolute structure parameter: 0.037 (17)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.45109 (9)0.47409 (8)0.68886 (6)0.0483 (2)
Cu20.04690 (10)0.09647 (9)1.20718 (6)0.0521 (2)
Cl10.5423 (2)0.66843 (19)0.56747 (13)0.0559 (4)
Cl20.5420 (2)0.2158 (2)0.74059 (16)0.0645 (5)
Cl30.5213 (3)0.6052 (3)0.84022 (14)0.0853 (8)
Cl40.2175 (3)0.3936 (2)0.60310 (16)0.0687 (5)
Cl50.0208 (3)0.2799 (2)1.08265 (15)0.0652 (5)
Cl60.3083 (3)0.0122 (3)1.1496 (2)0.0934 (8)
Cl70.0524 (3)0.2349 (3)1.35607 (14)0.0823 (7)
Cl80.0597 (3)0.1536 (2)1.23306 (16)0.0700 (5)
N10.6252 (7)0.1280 (6)0.3943 (4)0.0479 (12)
H10.67840.11130.32850.057*
C20.6276 (9)0.3097 (7)0.4135 (5)0.0411 (13)
H20.54930.32990.47580.049*
C30.8127 (9)0.3346 (8)0.4494 (6)0.0556 (17)
H3A0.88840.36080.38660.067*
H3B0.81730.42330.49920.067*
C40.8680 (14)0.1736 (10)0.5061 (8)0.0801 (18)
H4A0.98140.13950.47870.096*
H4B0.87450.18550.58440.096*
C50.7342 (12)0.0505 (10)0.4820 (6)0.0659 (15)
H5A0.66360.02330.54690.079*
H5B0.78900.04920.45730.079*
C60.4454 (13)0.0581 (12)0.3933 (8)0.090 (2)
H6A0.38150.11110.33480.135*
H6B0.38680.07610.46190.135*
H6C0.45290.05760.38250.135*
C70.5632 (8)0.4099 (7)0.3159 (5)0.0441 (14)
C80.4058 (9)0.4876 (8)0.3194 (5)0.0492 (15)
H80.33670.47860.38280.059*
N90.3504 (9)0.5762 (7)0.2329 (5)0.0598 (16)
H90.25110.62500.23730.072*
C100.4428 (11)0.5926 (9)0.1392 (6)0.0625 (19)
H100.39790.65430.08030.075*
C110.6015 (11)0.5199 (10)0.1293 (6)0.063 (2)
H110.66740.53250.06490.076*
C120.6633 (10)0.4250 (9)0.2197 (6)0.0569 (17)
H120.77090.37230.21510.068*
N130.2330 (8)0.1530 (7)0.9112 (4)0.0609 (16)
H130.28440.17240.84410.073*
C140.0515 (9)0.1013 (8)0.8941 (5)0.0522 (15)
H140.00160.05800.96390.063*
C150.0365 (14)0.2655 (10)0.8633 (8)0.092 (3)
H15A0.03320.28590.78450.111*
H15B0.15690.26530.88860.111*
C160.0625 (13)0.3942 (10)0.9176 (8)0.0801 (18)
H16A0.09690.48090.86470.096*
H16B0.00860.44200.97460.096*
C170.2154 (11)0.3137 (9)0.9645 (6)0.0659 (15)
H17A0.20030.29651.04310.079*
H17B0.31800.37990.94950.079*
C180.3390 (13)0.0304 (12)0.9712 (9)0.090 (2)
H18A0.34170.06980.93300.135*
H18B0.28970.01001.04330.135*
H18C0.45520.07050.97660.135*
C190.0348 (8)0.0264 (7)0.8094 (5)0.0411 (13)
C200.1145 (10)0.1155 (9)0.8152 (6)0.0588 (18)
H200.19350.10350.87300.071*
N210.1472 (9)0.2209 (7)0.7369 (6)0.0656 (17)
H210.24270.27500.74160.079*
C220.0383 (11)0.2457 (9)0.6523 (7)0.065 (2)
H220.06720.31620.59810.078*
C230.1148 (11)0.1655 (9)0.6476 (6)0.0618 (19)
H230.19680.18560.59270.074*
C240.1481 (9)0.0529 (8)0.7256 (6)0.0551 (16)
H240.25100.00610.72030.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0495 (5)0.0505 (4)0.0454 (4)0.0169 (4)0.0002 (3)0.0037 (3)
Cu20.0503 (5)0.0578 (4)0.0481 (4)0.0172 (4)0.0036 (4)0.0045 (3)
Cl10.0618 (11)0.0487 (8)0.0567 (8)0.0152 (8)0.0011 (8)0.0041 (6)
Cl20.0545 (11)0.0616 (10)0.0757 (11)0.0014 (9)0.0065 (9)0.0103 (8)
Cl30.1103 (19)0.1024 (15)0.0455 (9)0.0643 (15)0.0119 (11)0.0196 (9)
Cl40.0524 (11)0.0755 (12)0.0798 (12)0.0191 (9)0.0138 (9)0.0122 (9)
Cl50.0699 (12)0.0640 (10)0.0635 (10)0.0111 (9)0.0054 (9)0.0216 (8)
Cl60.0641 (14)0.1025 (16)0.1170 (17)0.0317 (13)0.0425 (13)0.0296 (14)
Cl70.1011 (17)0.0976 (14)0.0455 (8)0.0541 (13)0.0062 (10)0.0098 (9)
Cl80.0693 (13)0.0683 (11)0.0734 (11)0.0073 (10)0.0063 (10)0.0137 (9)
N10.049 (3)0.043 (3)0.053 (3)0.004 (2)0.008 (3)0.007 (2)
C20.045 (3)0.041 (3)0.038 (3)0.007 (3)0.010 (3)0.002 (2)
C30.046 (4)0.052 (4)0.071 (4)0.003 (3)0.015 (3)0.013 (3)
C40.086 (5)0.071 (4)0.085 (4)0.004 (3)0.008 (4)0.014 (3)
C50.084 (4)0.063 (3)0.051 (3)0.020 (3)0.000 (3)0.011 (2)
C60.072 (4)0.095 (5)0.103 (5)0.017 (4)0.033 (4)0.013 (4)
C70.039 (3)0.047 (3)0.045 (3)0.007 (3)0.003 (3)0.004 (3)
C80.044 (4)0.055 (4)0.048 (3)0.009 (3)0.003 (3)0.005 (3)
N90.053 (4)0.064 (3)0.063 (4)0.018 (3)0.013 (3)0.000 (3)
C100.062 (5)0.060 (4)0.064 (4)0.005 (4)0.014 (4)0.010 (3)
C110.060 (5)0.075 (5)0.053 (4)0.010 (4)0.012 (4)0.014 (3)
C120.045 (4)0.063 (4)0.062 (4)0.014 (3)0.001 (3)0.005 (3)
N130.062 (4)0.080 (4)0.042 (3)0.034 (3)0.006 (3)0.002 (3)
C140.045 (4)0.060 (4)0.052 (3)0.009 (3)0.002 (3)0.009 (3)
C150.100 (7)0.070 (5)0.110 (7)0.017 (5)0.016 (6)0.040 (5)
C160.086 (5)0.071 (4)0.085 (4)0.004 (3)0.008 (4)0.014 (3)
C170.084 (4)0.063 (3)0.051 (3)0.020 (3)0.000 (3)0.011 (2)
C180.072 (4)0.095 (5)0.103 (5)0.017 (4)0.033 (4)0.013 (4)
C190.038 (3)0.045 (3)0.041 (3)0.002 (3)0.006 (3)0.000 (2)
C200.045 (4)0.058 (4)0.074 (5)0.015 (3)0.006 (4)0.006 (3)
N210.049 (4)0.062 (4)0.087 (5)0.017 (3)0.001 (3)0.015 (3)
C220.060 (5)0.059 (4)0.077 (5)0.008 (4)0.017 (4)0.018 (4)
C230.060 (5)0.061 (4)0.067 (4)0.005 (4)0.000 (4)0.022 (3)
C240.040 (4)0.062 (4)0.064 (4)0.014 (3)0.000 (3)0.007 (3)
Geometric parameters (Å, º) top
Cu1—Cl12.2264 (17)N9—H90.8600
Cu1—Cl22.2774 (19)C10—C111.357 (11)
Cu1—Cl32.2605 (18)C10—H100.9300
Cu1—Cl42.2216 (19)C11—C121.407 (9)
Cu1—Cl7i5.577 (2)C11—H110.9300
Cu1—Cu2ii7.6910 (13)C12—H120.9300
Cu2—Cl52.2349 (18)N13—C141.485 (9)
Cu2—Cl62.236 (2)N13—C171.495 (9)
Cu2—Cl72.2412 (18)N13—C181.464 (11)
Cu2—Cl82.244 (2)N13—H130.9100
Cl4—Cl7i4.375 (3)C14—C151.529 (11)
N1—C21.511 (7)C14—C191.512 (8)
N1—C51.489 (10)C14—H140.9800
N1—C61.502 (11)C15—C161.493 (12)
N1—H10.9100C15—H15A0.9700
N1—Cl6iii3.282 (6)C15—H15B0.9700
N1—Cl8iii3.844 (6)C16—C171.456 (11)
C2—C31.518 (9)C16—H16A0.9700
C2—C71.505 (8)C16—H16B0.9700
C2—H20.9800C17—H17A0.9700
C3—C41.516 (11)C17—H17B0.9700
C3—H3A0.9700C18—H18A0.9600
C3—H3B0.9700C18—H18B0.9600
C4—C51.489 (11)C18—H18C0.9600
C4—H4A0.9700C19—C241.354 (9)
C4—H4B0.9700C19—C201.363 (9)
C5—H5A0.9700C20—N211.346 (9)
C5—H5B0.9700C20—H200.9300
C6—H6A0.9600N21—C221.338 (10)
C6—H6B0.9600N21—H210.8600
C6—H6C0.9600C22—C231.351 (11)
C7—C81.361 (9)C22—H220.9300
C7—C121.393 (9)C23—C241.386 (9)
C8—N91.329 (8)C23—H230.9300
C8—H80.9300C24—H240.9300
N9—C101.336 (10)
Cl1—Cu1—Cl2135.32 (8)N9—C8—C7120.3 (6)
Cl1—Cu1—Cl396.68 (7)N9—C8—H8119.8
Cl1—Cu1—Cl498.89 (7)C7—C8—H8119.8
Cl2—Cu1—Cl399.20 (9)C8—N9—C10122.7 (6)
Cl2—Cu1—Cl495.22 (8)C8—N9—H9118.6
Cl3—Cu1—Cl4139.84 (9)C10—N9—H9118.6
Cl1—Cu1—Cl7i54.66 (6)N9—C10—C11120.6 (6)
Cl2—Cu1—Cl7i136.81 (6)N9—C10—H10119.7
Cl3—Cu1—Cl7i122.95 (8)C11—C10—H10119.7
Cl4—Cu1—Cl7i47.00 (6)C10—C11—C12118.0 (7)
Cl1—Cu1—Cu2ii19.19 (5)C10—C11—H11121.0
Cl2—Cu1—Cu2ii116.44 (5)C12—C11—H11121.0
Cl3—Cu1—Cu2ii106.45 (5)C7—C12—C11119.9 (6)
Cl4—Cu1—Cu2ii100.06 (6)C7—C12—H12120.0
Cl7i—Cu1—Cu2ii63.50 (3)C11—C12—H12120.0
Cl5—Cu2—Cl6100.44 (9)C18—N13—C14114.2 (6)
Cl5—Cu2—Cl798.73 (8)C18—N13—C17114.4 (6)
Cl5—Cu2—Cl8131.17 (9)C14—N13—C17104.7 (6)
Cl6—Cu2—Cl7135.29 (11)C14—N13—H13107.7
Cl6—Cu2—Cl896.80 (9)C17—N13—H13107.7
Cl7—Cu2—Cl8100.20 (9)C18—N13—H13107.7
Cu1—Cl4—Cl7i111.20 (8)N13—C14—C19114.1 (6)
C5—N1—C6112.9 (6)N13—C14—C15101.5 (6)
C5—N1—C2105.0 (5)C19—C14—C15114.1 (6)
C6—N1—C2113.6 (6)N13—C14—H14109.0
C5—N1—Cl6iii115.3 (4)C19—C14—H14109.0
C6—N1—Cl6iii88.0 (5)C15—C14—H14109.0
C2—N1—Cl6iii121.7 (4)C16—C15—C14106.5 (7)
C5—N1—Cl8iii83.5 (4)C16—C15—H15A110.4
C6—N1—Cl8iii143.2 (5)C14—C15—H15A110.4
C2—N1—Cl8iii91.6 (4)C16—C15—H15B110.4
Cl6iii—N1—Cl8iii55.41 (10)C14—C15—H15B110.4
C2—N1—H1108.4H15A—C15—H15B108.6
C5—N1—H1108.4C17—C16—C15106.9 (7)
C6—N1—H1108.4C17—C16—H16A110.3
Cl6iii—N1—H120.6C15—C16—H16A110.3
Cl8iii—N1—H135.5C17—C16—H16B110.3
C7—C2—N1111.6 (5)C15—C16—H16B110.3
C7—C2—C3118.5 (6)H16A—C16—H16B108.6
N1—C2—C3102.4 (5)C16—C17—N13106.0 (6)
C7—C2—H2107.9C16—C17—H17A110.5
N1—C2—H2107.9N13—C17—H17A110.5
C3—C2—H2107.9C16—C17—H17B110.5
C4—C3—C2105.9 (6)N13—C17—H17B110.5
C4—C3—H3A110.5H17A—C17—H17B108.7
C2—C3—H3A110.5N13—C18—H18A109.5
C4—C3—H3B110.5N13—C18—H18B109.5
C2—C3—H3B110.5H18A—C18—H18B109.5
H3A—C3—H3B108.7N13—C18—H18C109.5
C5—C4—C3106.7 (7)H18A—C18—H18C109.5
C5—C4—H4A110.4H18B—C18—H18C109.5
C3—C4—H4A110.4C24—C19—C20117.6 (6)
C5—C4—H4B110.4C24—C19—C14126.2 (6)
C3—C4—H4B110.4C20—C19—C14116.0 (6)
H4A—C4—H4B108.6N21—C20—C19119.8 (7)
C4—C5—N1106.3 (6)N21—C20—H20120.1
C4—C5—H5A110.5C19—C20—H20120.1
N1—C5—H5A110.5C20—N21—C22123.2 (7)
C4—C5—H5B110.5C20—N21—H21118.4
N1—C5—H5B110.5C22—N21—H21118.4
H5A—C5—H5B108.7N21—C22—C23118.2 (7)
N1—C6—H6A109.5N21—C22—H22120.9
N1—C6—H6B109.5C23—C22—H22120.9
H6A—C6—H6B109.5C22—C23—C24119.1 (8)
N1—C6—H6C109.5C22—C23—H23120.4
H6A—C6—H6C109.5C24—C23—H23120.4
H6B—C6—H6C109.5C19—C24—C23121.8 (7)
C8—C7—C12118.5 (6)C19—C24—H24119.1
C8—C7—C2120.8 (6)C23—C24—H24119.1
C12—C7—C2120.6 (6)
Cl1—Cu1—Cl4—Cl7i18.84 (8)C8—N9—C10—C111.1 (11)
Cl3—Cu1—Cl4—Cl7i92.75 (13)N9—C10—C11—C121.2 (12)
Cl2—Cu1—Cl4—Cl7i156.32 (7)C8—C7—C12—C110.5 (10)
Cu2ii—Cu1—Cl4—Cl7i38.27 (7)C2—C7—C12—C11179.7 (7)
C5—N1—C2—C7165.2 (6)C10—C11—C12—C70.9 (11)
C6—N1—C2—C771.0 (8)C18—N13—C14—C1973.3 (8)
Cl6iii—N1—C2—C732.0 (7)C17—N13—C14—C19160.8 (6)
Cl8iii—N1—C2—C781.5 (5)C18—N13—C14—C15163.6 (7)
C5—N1—C2—C337.4 (7)C17—N13—C14—C1537.6 (7)
C6—N1—C2—C3161.2 (6)N13—C14—C15—C1628.1 (9)
Cl6iii—N1—C2—C395.8 (5)C19—C14—C15—C16151.2 (7)
Cl8iii—N1—C2—C346.3 (4)C14—C15—C16—C177.8 (11)
C7—C2—C3—C4153.2 (6)C15—C16—C17—N1315.8 (10)
N1—C2—C3—C429.9 (7)C18—N13—C17—C16160.2 (8)
C2—C3—C4—C511.7 (9)C14—N13—C17—C1634.3 (8)
C3—C4—C5—N111.7 (9)N13—C14—C19—C2424.8 (9)
C6—N1—C5—C4155.1 (8)C15—C14—C19—C2491.2 (9)
C2—N1—C5—C430.9 (9)N13—C14—C19—C20159.6 (6)
Cl6iii—N1—C5—C4105.8 (6)C15—C14—C19—C2084.4 (8)
Cl8iii—N1—C5—C459.1 (6)C24—C19—C20—N212.2 (10)
N1—C2—C7—C8108.6 (7)C14—C19—C20—N21173.8 (6)
C3—C2—C7—C8132.9 (7)C19—C20—N21—C220.8 (11)
N1—C2—C7—C1271.2 (8)C20—N21—C22—C232.6 (12)
C3—C2—C7—C1247.3 (8)N21—C22—C23—C244.4 (12)
C12—C7—C8—N90.3 (10)C20—C19—C24—C230.3 (10)
C2—C7—C8—N9179.8 (6)C14—C19—C24—C23175.3 (7)
C7—C8—N9—C100.7 (10)C22—C23—C24—C193.1 (12)
Symmetry codes: (i) x, y+1, z1; (ii) x+1, y+1, z1; (iii) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl6iii0.912.453.282 (6)152
N9—H9···Cl7i0.862.403.145 (7)145
N9—H9···Cl5i0.862.703.336 (6)132
N13—H13···Cl20.912.353.156 (6)148
N21—H21···Cl3iv0.862.353.141 (7)153
N21—H21···Cl1iv0.862.783.357 (7)125
Symmetry codes: (i) x, y+1, z1; (iii) x+1, y, z1; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formula(C10H16N2)[CuCl4]
Mr369.59
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6919 (8), 8.1526 (9), 12.2337 (15)
α, β, γ (°)87.249 (9), 88.694 (8), 89.414 (7)
V3)766.05 (15)
Z2
Radiation typeMo Kα
µ (mm1)2.10
Crystal size (mm)0.50 × 0.45 × 0.26
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.663, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
4302, 4302, 3327
Rint0.000
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.05
No. of reflections4302
No. of parameters290
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.71
Absolute structureFlack (1983), 781 Friedel pairs
Absolute structure parameter0.037 (17)

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—Cl12.2264 (17)N1—C51.489 (10)
Cu1—Cl22.2774 (19)N1—C61.502 (11)
Cu1—Cl32.2605 (18)C8—N91.329 (8)
Cu1—Cl42.2216 (19)N9—C101.336 (10)
Cu2—Cl52.2349 (18)N13—C141.485 (9)
Cu2—Cl62.236 (2)N13—C171.495 (9)
Cu2—Cl72.2412 (18)N13—C181.464 (11)
Cu2—Cl82.244 (2)C20—N211.346 (9)
N1—C21.511 (7)N21—C221.338 (10)
Cl1—Cu1—Cl2135.32 (8)Cl5—Cu2—Cl798.73 (8)
Cl1—Cu1—Cl396.68 (7)Cl5—Cu2—Cl8131.17 (9)
Cl1—Cu1—Cl498.89 (7)Cl6—Cu2—Cl7135.29 (11)
Cl2—Cu1—Cl399.20 (9)Cl6—Cu2—Cl896.80 (9)
Cl2—Cu1—Cl495.22 (8)Cl7—Cu2—Cl8100.20 (9)
Cl3—Cu1—Cl4139.84 (9)C8—N9—C10122.7 (6)
Cl5—Cu2—Cl6100.44 (9)C20—N21—C22123.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl6i0.912.453.282 (6)152
N9—H9···Cl7ii0.862.403.145 (7)145
N9—H9···Cl5ii0.862.703.336 (6)132
N13—H13···Cl20.912.353.156 (6)148
N21—H21···Cl3iii0.862.353.141 (7)153
N21—H21···Cl1iii0.862.783.357 (7)125
Symmetry codes: (i) x+1, y, z1; (ii) x, y+1, z1; (iii) x1, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds