Download citation
Download citation
link to html
In the title compound, C3H8NO2+·C4H5O6, the L-alanine mol­ecule exists in the cationic form, with a positively charged amino group and an uncharged carboxyl­ic acid group. The tartaric acid mol­ecule exists in the mono-ionized state. The structure is stabilized by a three-dimensional network of O—H...O and N—H...O hydrogen bonds. No head-to-tail hydrogen bond is observed among the amino acid mol­ecules. The aggregation pattern observed in the structure has striking similarities to those observed in other related amino acid–tartaric acid complexes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802019414/ac6018sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802019414/ac6018Isup2.hkl
Contains datablock I

CCDC reference: 200788

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.044
  • wR factor = 0.114
  • Data-to-parameter ratio = 6.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
STRVAL_01 From the CIF: _refine_ls_abs_structure_Flack -0.100 From the CIF: _refine_ls_abs_structure_Flack_su 1.900 Alert C Flack test results are meaningless. PLAT_031 Alert C Refined Extinction Parameter within Range .... 3.21 Sigma General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 24.96 From the CIF: _reflns_number_total 954 Count of symmetry unique reflns 953 Completeness (_total/calc) 100.10% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1 Fraction of Friedel pairs measured 0.001 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

L-alaninium tartrate top
Crystal data top
C3H8NO2+·C4H5O6F(000) = 252
Mr = 239.18Dx = 1.521 Mg m3
Dm = 1.53 Mg m3
Dm measured by flotation in a mixture of xylene and carbon tetrachloride
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 5.1446 (8) Åθ = 2.8–25.0°
b = 13.721 (3) ŵ = 0.14 mm1
c = 7.4751 (9) ÅT = 293 K
β = 98.09 (1)°Plates, colourless
V = 522.42 (14) Å30.35 × 0.30 × 0.15 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
944 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.0°, θmin = 2.8°
ω–2θ scansh = 06
Absorption correction: ψ scan
(North et al. 1968)
k = 016
Tmin = 0.952, Tmax = 0.979l = 88
1061 measured reflections2 standard reflections every 200 reflections
954 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0848P)2 + 0.196P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.40 e Å3
954 reflectionsΔρmin = 0.30 e Å3
146 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.045 (14)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.1 (19)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factorsbased on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1688 (6)0.5120 (3)0.7325 (4)0.0490 (9)
H10.15200.48530.82830.074*
O20.5462 (5)0.5643 (2)0.8841 (4)0.0434 (7)
O30.1891 (5)0.8233 (2)1.3666 (3)0.0371 (7)
H30.12190.82691.45950.056*
O40.1330 (6)0.7148 (3)1.2868 (3)0.0459 (8)
O50.0059 (5)0.6910 (2)0.9597 (3)0.0355 (6)
H50.12030.66871.01400.053*
O60.1078 (5)0.90422 (19)0.9821 (3)0.0306 (6)
H60.21440.88160.90080.046*
O70.4473 (4)0.8258 (2)0.7834 (3)0.0330 (6)
O80.0315 (4)0.8467 (2)0.6604 (3)0.0329 (6)
N10.6550 (6)0.6760 (2)0.6067 (4)0.0314 (7)
H1A0.62160.71980.68830.047*
H1B0.67820.70630.50480.047*
H1C0.79980.64310.64880.047*
C10.3949 (7)0.5587 (3)0.7495 (5)0.0305 (8)
C20.4315 (8)0.6077 (3)0.5704 (5)0.0354 (8)
H2A0.27290.64520.52770.042*
C30.4727 (13)0.5341 (4)0.4281 (7)0.0680 (18)
H3A0.49440.56730.31810.102*
H3B0.32300.49180.40700.102*
H3C0.62700.49640.46830.102*
C40.0555 (6)0.7650 (3)1.2559 (4)0.0262 (7)
C50.1493 (6)0.7578 (3)1.0720 (4)0.0256 (7)
H5A0.33150.73491.08930.031*
C60.1387 (6)0.8580 (2)0.9813 (4)0.0217 (7)
H6A0.27350.89921.04960.026*
C70.2117 (6)0.8436 (2)0.7923 (4)0.0215 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0533 (18)0.060 (2)0.0355 (15)0.0295 (16)0.0111 (12)0.0073 (14)
O20.0405 (15)0.0521 (17)0.0370 (15)0.0132 (13)0.0031 (12)0.0158 (13)
O30.0431 (13)0.0515 (17)0.0194 (11)0.0106 (13)0.0135 (10)0.0046 (12)
O40.0540 (16)0.058 (2)0.0300 (13)0.0215 (15)0.0212 (12)0.0022 (12)
O50.0498 (14)0.0334 (13)0.0255 (13)0.0115 (12)0.0129 (11)0.0048 (11)
O60.0291 (12)0.0371 (14)0.0274 (12)0.0068 (10)0.0105 (9)0.0082 (11)
O70.0269 (12)0.0476 (16)0.0269 (11)0.0013 (11)0.0127 (9)0.0042 (11)
O80.0300 (12)0.0512 (16)0.0191 (11)0.0002 (12)0.0085 (9)0.0020 (11)
N10.0354 (14)0.0376 (16)0.0244 (13)0.0106 (13)0.0154 (11)0.0011 (12)
C10.0336 (18)0.0248 (16)0.0356 (18)0.0061 (14)0.0137 (14)0.0002 (15)
C20.039 (2)0.0349 (19)0.0329 (18)0.0091 (16)0.0083 (14)0.0035 (15)
C30.110 (5)0.056 (3)0.045 (3)0.043 (3)0.037 (3)0.020 (2)
C40.0292 (15)0.0302 (16)0.0204 (15)0.0014 (15)0.0075 (12)0.0054 (14)
C50.0282 (15)0.0313 (18)0.0179 (14)0.0009 (14)0.0055 (11)0.0005 (14)
C60.0209 (14)0.0261 (15)0.0193 (14)0.0006 (12)0.0072 (11)0.0040 (12)
C70.0260 (15)0.0202 (14)0.0201 (14)0.0028 (13)0.0093 (11)0.0013 (12)
Geometric parameters (Å, º) top
O1—C11.319 (5)N1—H1B0.8900
O1—H10.8200N1—H1C0.8900
O2—C11.185 (5)C1—C21.533 (5)
O3—C41.279 (4)C2—C31.503 (6)
O3—H30.8200C2—H2A0.9800
O4—C41.238 (4)C3—H3A0.9600
O5—C51.412 (4)C3—H3B0.9600
O5—H50.8200C3—H3C0.9600
O6—C61.418 (4)C4—C51.522 (4)
O6—H60.8200C5—C61.530 (5)
O7—C71.247 (4)C5—H5A0.9800
O8—C71.256 (4)C6—C71.525 (4)
N1—C21.479 (5)C6—H6A0.9800
N1—H1A0.8900
C1—O1—H1109.5C2—C3—H3C109.5
C4—O3—H3109.5H3A—C3—H3C109.5
C5—O5—H5109.5H3B—C3—H3C109.5
C6—O6—H6109.5O4—C4—O3126.2 (3)
C2—N1—H1A109.5O4—C4—C5119.3 (3)
C2—N1—H1B109.5O3—C4—C5114.5 (3)
H1A—N1—H1B109.5O5—C5—C4110.8 (3)
C2—N1—H1C109.5O5—C5—C6109.7 (2)
H1A—N1—H1C109.5C4—C5—C6110.2 (3)
H1B—N1—H1C109.5O5—C5—H5A108.7
O2—C1—O1125.4 (3)C4—C5—H5A108.7
O2—C1—C2124.5 (3)C6—C5—H5A108.7
O1—C1—C2110.1 (3)O6—C6—C7113.5 (2)
N1—C2—C3111.9 (4)O6—C6—C5112.1 (3)
N1—C2—C1107.8 (3)C7—C6—C5107.2 (3)
C3—C2—C1111.8 (4)O6—C6—H6A107.9
N1—C2—H2A108.4C7—C6—H6A107.9
C3—C2—H2A108.4C5—C6—H6A107.9
C1—C2—H2A108.4O7—C7—O8125.5 (3)
C2—C3—H3A109.5O7—C7—C6116.3 (3)
C2—C3—H3B109.5O8—C7—C6118.2 (3)
H3A—C3—H3B109.5
O2—C1—C2—N110.8 (5)O5—C5—C6—O672.3 (3)
O1—C1—C2—N1167.7 (3)C4—C5—C6—O649.9 (3)
O2—C1—C2—C3112.5 (5)O5—C5—C6—C752.9 (3)
O1—C1—C2—C369.0 (5)C4—C5—C6—C7175.1 (2)
O4—C4—C5—O50.4 (4)O6—C6—C7—O7163.2 (3)
O3—C4—C5—O5179.0 (3)C5—C6—C7—O772.5 (3)
O4—C4—C5—C6122.0 (4)O6—C6—C7—O819.5 (4)
O3—C4—C5—C659.3 (4)C5—C6—C7—O8104.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.821.842.651 (4)169
O6—H6···O7ii0.821.992.765 (4)158
O5—H5···O40.822.152.639 (3)119
O5—H5···O2ii0.822.342.878 (4)124
O3—H3···O8iii0.821.662.466 (3)170
N1—H1A···O70.891.902.740 (4)157
N1—H1C···O5iv0.892.492.958 (4)114
N1—H1B···O4v0.892.012.815 (4)149
Symmetry codes: (i) x, y1/2, z+2; (ii) x1, y, z; (iii) x, y, z+1; (iv) x+1, y, z; (v) x+1, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds