Download citation
Download citation
link to html
A highly rearranged novel dilactone, ent-5α,15α-epoxy-9,10-friedo-10β,11β-di­hydroxy-16,11α:19,10β-diseco-17-nork­aur­an-16,19-dioic acid 16\rightarrow11:19\rightarrow10-dilactone, C19H24O5, was synthesized from ent-kaur-9(11)-en,16-nor,19-oic acid, which was obtained by oxidation of grandiflorenic acid, under Baeyer–Villiger rearrangement conditions. The structure of the final product was determined unambiguously by X-ray analysis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680202086X/ac6020sup1.cif
Contains datablocks global, 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680202086X/ac60203sup2.hkl
Contains datablock 3

CCDC reference: 176188

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.122
  • Data-to-parameter ratio = 9.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.48 From the CIF: _reflns_number_total 2074 Count of symmetry unique reflns 2082 Completeness (_total/calc) 99.62% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

Natural and synthetic diterpene lactones show many important biological activities: anti-HIV (Chen et al., 1992), antitumor (Ghisalberti, 1997) and allelopathic (e.g. the phytohormones gibberellins), among others. In an attempt to synthesize novel diterpene lactones from natural sources, for biological screening, the norketone (2), obtained from grandiflorenic acid (1), isolated from Wedelia paludosa (Asteraceae), was submitted to a Baeyer–Villiger oxidation (Anastasia et al., 1985). The product was the very rearranged dilactone (3), whose structure was unambiguously confirmed by X-ray analysis.

Fig. 1 shows an ORTEP-3 (Farrugia, 1997) view of (3). X-ray crystallographic analysis showed that a rearrangement involving C20 occurred, leading to the formation of a lactone in ring A. This rearrangement is common in natural diterpenoids, such as tetrachirin (Zabel et al., 1980; Vieira et al., 2001) and eupatalbin (Herz et al., 1979). Two other changes on the skeleton of (1) occurred: ring D rearrangement leading to the formation of a second lactone moiety, as well as an ether linkage on ring B between C5 and C15 in (3).

The main bond lengths and angles are given in Table 1. The mean value of the C—C single bond distances is 1.54 (2) Å, in good agreement with the expected value for formal single bonds (Orpen et al., 1992). The C—O single-bond lengths are very similar [mean 1.46 (2) Å], except for O2—C19 and O4—C16 ones, whose bond lengths are 1.364 (2) and 1.367 (2) Å, respectively. This decrease in bond length is a consequence of resonance involving the trio OC—O localized in the two lactones rings. The O1C19 and O3C16 bond lengths of the two carbonyl are 1.202 (3) and 1.205 (3) Å, respectively. The three C—O—C angles are also similar [mean 109 (1)°]. The two lactone rings are in envelope conformations, with atoms C5 and C12 in the flap positions (Cremer & Pople, 1975). No intra- or intermolecular hydrogen bonds occur in the structure of (3).

Experimental top

Grandiflorenic acid, (1), was reacted with NaIO4 and catalytic amounts of OsO4 (Castellaro et al., 1990). The product was norketone (2). Under Baeyer–Villiger rearrangement conditions, 2.5 ml of hydrogen peroxide (30%) dissolved in anhydrous dichloromethane (15 ml) and 14 ml of anhydrous t rifluoroacetic acid were added to a solution of 0.66 mmol (200 mg) of ketoacid (2) in anhydrous dicloromethane (10 ml). The reaction was left at room temperature for 1 h. The unexpected novel compound (3) was isolated with 19% yield after column chromatography (hexane–ethyl acetate, 7:3). Colourless well shaped single crystals were obtained by recrystallization from chloroform.

Refinement top

Since the anomalous scattering was not large enough to permit determination of the enantiomer present, the intensities of the Friedel reflections were averaged before refinement. The H atoms were positioned stereochemically and were refined using a riding model with C—H = 0.99 Å. The H atoms of the rings were set isotropically, with displacement parameters 20% greater than the equivalent isotropic displacement parameter of the atom to which each was bonded; this percentage was set to 50% for methoxy H atom.

Computing details top

Data collection: COLLECT (Nonius BV, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) view of the title compound, showing the atom and ring labeling, and 50% probability ellipsoids.
ent-5α,15α-epoxy-9,10-friedo-10β,11β-dihydroxy-16,11α:19,10β-disecco-17- norkauran-16,19-dioic acid 1611:1910-dilactone top
Crystal data top
C19H24O5Dx = 1.407 Mg m3
Mr = 332.38Melting point: 503-505 K K
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ac 2abCell parameters from 2081 reflections
a = 6.6980 (2) Åθ = 1.0–27.5°
b = 13.6063 (3) ŵ = 0.10 mm1
c = 17.2155 (5) ÅT = 120 K
V = 1568.85 (7) Å3Prism, colorless
Z = 40.25 × 0.05 × 0.05 mm
F(000) = 712
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.023
CCD scansθmax = 27.5°, θmin = 3.0°
3592 measured reflectionsh = 08
2074 independent reflectionsk = 017
1857 reflections with I > 2σ(I)l = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0794P)2 + 0.0434P]
where P = (Fo2 + 2Fc2)/3
2074 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C19H24O5V = 1568.85 (7) Å3
Mr = 332.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6980 (2) ŵ = 0.10 mm1
b = 13.6063 (3) ÅT = 120 K
c = 17.2155 (5) Å0.25 × 0.05 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1857 reflections with I > 2σ(I)
3592 measured reflectionsRint = 0.023
2074 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.19Δρmax = 0.43 e Å3
2074 reflectionsΔρmin = 0.52 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9371 (3)0.49131 (13)0.42067 (9)0.0297 (4)
O20.8328 (3)0.60085 (11)0.50859 (9)0.0214 (4)
O30.2973 (3)0.74070 (13)0.78964 (10)0.0304 (4)
O40.4551 (3)0.75071 (11)0.67530 (9)0.0228 (4)
O50.5882 (3)0.46932 (11)0.66243 (9)0.0218 (4)
C10.4906 (4)0.61206 (16)0.55131 (13)0.0214 (5)
H1A0.3990.60050.59550.026*
H1B0.47170.68070.53360.026*
C20.4365 (4)0.54187 (17)0.48498 (13)0.0257 (5)
H2A0.28990.54150.47790.031*
H2B0.49760.56590.43620.031*
C30.5084 (4)0.43717 (17)0.50089 (13)0.0243 (5)
H3A0.49840.39790.45260.029*
H3B0.42120.40640.54040.029*
C40.7271 (4)0.43615 (16)0.53009 (12)0.0218 (5)
C50.7401 (4)0.49211 (15)0.60803 (12)0.0195 (4)
C60.9420 (4)0.47644 (17)0.64873 (13)0.0235 (5)
H6A1.05220.49560.61360.028*
H6B0.95870.40620.66230.028*
C70.9478 (4)0.53995 (16)0.72317 (13)0.0228 (5)
H7A0.93840.49740.76970.027*
H7B1.0750.57690.72570.027*
C80.7707 (4)0.61175 (14)0.72096 (12)0.0192 (4)
C90.7818 (4)0.67206 (15)0.64208 (12)0.0182 (4)
C100.7072 (3)0.59853 (15)0.57885 (12)0.0179 (4)
C110.6601 (4)0.76832 (15)0.64905 (13)0.0208 (5)
H110.660.80440.59840.025*
C120.7404 (4)0.83416 (15)0.71387 (13)0.0239 (5)
H12A0.68550.90160.7110.029*
H12B0.88810.83680.71410.029*
C130.6578 (4)0.77688 (16)0.78329 (14)0.0231 (5)
H130.65730.8170.83190.028*
C140.7739 (4)0.67928 (15)0.79330 (12)0.0223 (5)
H14A0.91450.69480.80620.027*
H14B0.71650.64290.83780.027*
C150.5856 (4)0.54330 (16)0.72380 (13)0.0217 (5)
H15A0.58120.510.77490.026*
H15B0.46320.58350.71870.026*
C160.4497 (4)0.75566 (17)0.75449 (13)0.0236 (5)
C180.8139 (5)0.33231 (17)0.52817 (13)0.0292 (6)
H18A0.79250.30350.47670.044*
H18B0.74770.29170.56750.044*
H18C0.95740.33510.53910.044*
C190.8444 (4)0.50782 (17)0.47945 (12)0.0225 (5)
C200.9974 (4)0.70440 (17)0.62387 (13)0.0229 (5)
H20A0.99510.75850.58630.034*
H20B1.07170.64890.6020.034*
H20C1.06260.72640.67180.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0297 (10)0.0369 (9)0.0224 (7)0.0032 (8)0.0050 (8)0.0076 (7)
O20.0245 (9)0.0232 (7)0.0166 (7)0.0025 (7)0.0026 (7)0.0003 (6)
O30.0219 (9)0.0361 (9)0.0333 (9)0.0029 (8)0.0056 (8)0.0097 (8)
O40.0190 (8)0.0240 (8)0.0255 (8)0.0012 (7)0.0008 (7)0.0037 (6)
O50.0276 (9)0.0183 (7)0.0195 (7)0.0052 (7)0.0040 (7)0.0020 (6)
C10.0208 (12)0.0221 (10)0.0214 (10)0.0001 (9)0.0027 (9)0.0004 (8)
C20.0250 (12)0.0267 (11)0.0255 (10)0.0028 (10)0.0049 (10)0.0012 (9)
C30.0268 (12)0.0239 (10)0.0222 (10)0.0068 (9)0.0005 (10)0.0028 (9)
C40.0257 (12)0.0201 (9)0.0196 (10)0.0008 (10)0.0008 (10)0.0016 (8)
C50.0227 (11)0.0181 (9)0.0179 (9)0.0003 (9)0.0031 (9)0.0002 (8)
C60.0282 (13)0.0212 (10)0.0212 (10)0.0047 (10)0.0026 (10)0.0006 (9)
C70.0257 (11)0.0225 (10)0.0201 (10)0.0059 (9)0.0027 (10)0.0005 (9)
C80.0200 (11)0.0195 (9)0.0181 (9)0.0005 (9)0.0004 (9)0.0002 (8)
C90.0188 (11)0.0169 (9)0.0188 (9)0.0018 (9)0.0010 (9)0.0021 (8)
C100.0188 (11)0.0187 (9)0.0161 (9)0.0008 (9)0.0020 (8)0.0023 (7)
C110.0205 (11)0.0178 (9)0.0242 (10)0.0010 (10)0.0006 (9)0.0003 (8)
C120.0233 (11)0.0185 (9)0.0297 (11)0.0001 (9)0.0002 (10)0.0033 (9)
C130.0220 (11)0.0218 (10)0.0255 (10)0.0017 (9)0.0011 (10)0.0053 (9)
C140.0236 (12)0.0230 (9)0.0202 (10)0.0001 (10)0.0024 (9)0.0019 (8)
C150.0264 (11)0.0199 (9)0.0188 (9)0.0024 (9)0.0036 (10)0.0021 (8)
C160.0214 (12)0.0229 (10)0.0266 (11)0.0004 (10)0.0018 (10)0.0071 (9)
C180.0403 (15)0.0232 (10)0.0241 (10)0.0023 (11)0.0001 (11)0.0029 (9)
C190.0237 (11)0.0241 (10)0.0197 (9)0.0013 (10)0.0012 (9)0.0037 (8)
C200.0192 (11)0.0243 (10)0.0253 (10)0.0026 (9)0.0012 (10)0.0008 (9)
Geometric parameters (Å, º) top
O1—C191.208 (3)C7—H7A0.99
O2—C191.364 (3)C7—H7B0.99
O2—C101.474 (3)C8—C141.548 (3)
O3—C161.204 (3)C8—C151.551 (3)
O4—C161.365 (3)C8—C91.588 (3)
O4—C111.466 (3)C9—C201.542 (3)
O5—C51.417 (3)C9—C111.547 (3)
O5—C151.459 (3)C9—C101.561 (3)
C1—C21.532 (3)C11—C121.529 (3)
C1—C101.538 (3)C11—H111
C1—H1A0.99C12—C131.530 (3)
C1—H1B0.99C12—H12A0.99
C2—C31.529 (3)C12—H12B0.99
C2—H2A0.99C13—C161.507 (3)
C2—H2B0.99C13—C141.549 (3)
C3—C41.548 (4)C13—H131
C3—H3A0.99C14—H14A0.99
C3—H3B0.99C14—H14B0.99
C4—C191.526 (3)C15—H15A0.99
C4—C181.528 (3)C15—H15B0.99
C4—C51.545 (3)C18—H18A0.98
C5—C61.538 (3)C18—H18B0.98
C5—C101.548 (3)C18—H18C0.98
C6—C71.546 (3)C20—H20A0.98
C6—H6A0.99C20—H20B0.98
C6—H6B0.99C20—H20C0.98
C7—C81.537 (3)
C19—O2—C10108.32 (16)C10—C9—C8104.49 (15)
C16—O4—C11108.93 (18)O2—C10—C1106.45 (16)
C5—O5—C15109.62 (16)O2—C10—C5101.84 (16)
C2—C1—C10112.21 (19)C1—C10—C5110.25 (19)
C2—C1—H1A109.2O2—C10—C9112.09 (18)
C10—C1—H1A109.2C1—C10—C9116.12 (18)
C2—C1—H1B109.2C5—C10—C9109.13 (16)
C10—C1—H1B109.2O4—C11—C12101.57 (18)
H1A—C1—H1B107.9O4—C11—C9112.28 (17)
C3—C2—C1111.91 (19)C12—C11—C9111.5 (2)
C3—C2—H2A109.2O4—C11—H11110.4
C1—C2—H2A109.2C12—C11—H11110.4
C3—C2—H2B109.2C9—C11—H11110.4
C1—C2—H2B109.2C11—C12—C1398.29 (17)
H2A—C2—H2B107.9C11—C12—H12A112.1
C2—C3—C4111.37 (19)C13—C12—H12A112.1
C2—C3—H3A109.4C11—C12—H12B112.1
C4—C3—H3A109.4C13—C12—H12B112.1
C2—C3—H3B109.4H12A—C12—H12B109.7
C4—C3—H3B109.4C16—C13—C12100.1 (2)
H3A—C3—H3B108C16—C13—C14109.68 (18)
C19—C4—C18112.5 (2)C12—C13—C14110.0 (2)
C19—C4—C598.75 (17)C16—C13—H13112.2
C18—C4—C5116.92 (18)C12—C13—H13112.2
C19—C4—C3107.21 (18)C14—C13—H13112.2
C18—C4—C3111.2 (2)C8—C14—C13114.37 (18)
C5—C4—C3109.32 (19)C8—C14—H14A108.7
O5—C5—C6107.46 (17)C13—C14—H14A108.7
O5—C5—C4115.18 (19)C8—C14—H14B108.7
C6—C5—C4112.14 (19)C13—C14—H14B108.7
O5—C5—C10108.48 (18)H14A—C14—H14B107.6
C6—C5—C10113.73 (19)O5—C15—C8112.46 (18)
C4—C5—C1099.85 (16)O5—C15—H15A109.1
C5—C6—C7108.81 (19)C8—C15—H15A109.1
C5—C6—H6A109.9O5—C15—H15B109.1
C7—C6—H6A109.9C8—C15—H15B109.1
C5—C6—H6B109.9H15A—C15—H15B107.8
C7—C6—H6B109.9O3—C16—O4121.0 (2)
H6A—C6—H6B108.3O3—C16—C13130.6 (2)
C8—C7—C6108.37 (18)O4—C16—C13108.3 (2)
C8—C7—H7A110C4—C18—H18A109.5
C6—C7—H7A110C4—C18—H18B109.5
C8—C7—H7B110H18A—C18—H18B109.5
C6—C7—H7B110C4—C18—H18C109.5
H7A—C7—H7B108.4H18A—C18—H18C109.5
C7—C8—C14110.29 (18)H18B—C18—H18C109.5
C7—C8—C15103.55 (17)O1—C19—O2120.6 (2)
C14—C8—C15110.00 (18)O1—C19—C4128.6 (2)
C7—C8—C9108.28 (17)O2—C19—C4110.72 (18)
C14—C8—C9112.37 (16)C9—C20—H20A109.5
C15—C8—C9111.98 (18)C9—C20—H20B109.5
C20—C9—C11105.52 (17)H20A—C20—H20B109.5
C20—C9—C10109.93 (18)C9—C20—H20C109.5
C11—C9—C10115.36 (18)H20A—C20—H20C109.5
C20—C9—C8111.39 (18)H20B—C20—H20C109.5
C11—C9—C8110.27 (17)
C10—C1—C2—C345.2 (3)C6—C5—C10—C942.1 (2)
C1—C2—C3—C446.4 (3)C4—C5—C10—C9161.67 (19)
C2—C3—C4—C1943.7 (2)C20—C9—C10—O216.4 (2)
C2—C3—C4—C18166.97 (19)C11—C9—C10—O2102.8 (2)
C2—C3—C4—C562.4 (2)C8—C9—C10—O2135.99 (18)
C15—O5—C5—C668.8 (2)C20—C9—C10—C1139.00 (18)
C15—O5—C5—C4165.43 (18)C11—C9—C10—C119.9 (3)
C15—O5—C5—C1054.5 (2)C8—C9—C10—C1101.4 (2)
C19—C4—C5—O5156.8 (2)C20—C9—C10—C595.7 (2)
C18—C4—C5—O582.4 (3)C11—C9—C10—C5145.2 (2)
C3—C4—C5—O545.0 (2)C8—C9—C10—C523.9 (2)
C19—C4—C5—C679.9 (2)C16—O4—C11—C1228.6 (2)
C18—C4—C5—C640.9 (3)C16—O4—C11—C990.7 (2)
C3—C4—C5—C6168.36 (18)C20—C9—C11—O4173.35 (17)
C19—C4—C5—C1040.9 (2)C10—C9—C11—O465.1 (2)
C18—C4—C5—C10161.7 (2)C8—C9—C11—O452.9 (2)
C3—C4—C5—C1070.9 (2)C20—C9—C11—C1260.1 (2)
O5—C5—C6—C756.1 (2)C10—C9—C11—C12178.37 (18)
C4—C5—C6—C7176.38 (18)C8—C9—C11—C1260.3 (2)
C10—C5—C6—C764.0 (2)O4—C11—C12—C1344.5 (2)
C5—C6—C7—C811.8 (2)C9—C11—C12—C1375.3 (2)
C6—C7—C8—C14178.27 (18)C11—C12—C13—C1643.8 (2)
C6—C7—C8—C1564.1 (2)C11—C12—C13—C1471.6 (2)
C6—C7—C8—C954.9 (2)C7—C8—C14—C13158.0 (2)
C7—C8—C9—C2042.6 (2)C15—C8—C14—C1388.4 (2)
C14—C8—C9—C2079.5 (2)C9—C8—C14—C1337.1 (3)
C15—C8—C9—C20156.15 (18)C16—C13—C14—C851.8 (3)
C7—C8—C9—C11159.42 (19)C12—C13—C14—C857.3 (3)
C14—C8—C9—C1137.4 (3)C5—O5—C15—C811.1 (2)
C15—C8—C9—C1187.0 (2)C7—C8—C15—O554.7 (2)
C7—C8—C9—C1076.0 (2)C14—C8—C15—O5172.58 (17)
C14—C8—C9—C10161.90 (19)C9—C8—C15—O561.7 (2)
C15—C8—C9—C1037.5 (2)C11—O4—C16—O3177.8 (2)
C19—O2—C10—C187.6 (2)C11—O4—C16—C130.2 (2)
C19—O2—C10—C527.9 (2)C12—C13—C16—O3153.9 (3)
C19—O2—C10—C9144.41 (18)C14—C13—C16—O390.5 (3)
C2—C1—C10—O250.0 (2)C12—C13—C16—O428.8 (2)
C2—C1—C10—C559.7 (2)C14—C13—C16—O486.8 (2)
C2—C1—C10—C9175.56 (18)C10—O2—C19—O1178.7 (2)
O5—C5—C10—O2163.91 (17)C10—O2—C19—C40.8 (3)
C6—C5—C10—O276.6 (2)C18—C4—C19—O130.1 (4)
C4—C5—C10—O243.0 (2)C5—C4—C19—O1154.1 (3)
O5—C5—C10—C151.2 (2)C3—C4—C19—O192.4 (3)
C6—C5—C10—C1170.71 (18)C18—C4—C19—O2150.5 (2)
C4—C5—C10—C169.7 (2)C5—C4—C19—O226.5 (2)
O5—C5—C10—C977.4 (2)C3—C4—C19—O287.0 (2)

Experimental details

Crystal data
Chemical formulaC19H24O5
Mr332.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)6.6980 (2), 13.6063 (3), 17.2155 (5)
V3)1568.85 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3592, 2074, 1857
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.122, 1.19
No. of reflections2074
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.52

Computer programs: COLLECT (Nonius BV, 1997-2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C191.208 (3)C4—C191.526 (3)
O2—C191.364 (3)C4—C51.545 (3)
O2—C101.474 (3)C5—C101.548 (3)
O3—C161.204 (3)C8—C151.551 (3)
O4—C161.365 (3)C11—C121.529 (3)
O4—C111.466 (3)C12—C131.530 (3)
O5—C51.417 (3)C13—C161.507 (3)
O5—C151.459 (3)
C19—O2—C10108.32 (16)O3—C16—O4121.0 (2)
C16—O4—C11108.93 (18)O1—C19—O2120.6 (2)
C5—O5—C15109.62 (16)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds