Download citation
Download citation
link to html
Dominant in the structure of the title compound are two crystallographically different Si positions forming almost undistorted isolated [SiS4]4- tetrahedra and four crystallographically different Sm positions with coordination numbers seven and eight. The thio­silicate is isotypic with Nd3ClS2[SiS4] [Hatscher & Urland (2002d), Mater. Res. Bull. In the press].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802021694/br6070sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802021694/br6070Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](S-Si) = 0.002 Å
  • R factor = 0.020
  • wR factor = 0.038
  • Data-to-parameter ratio = 21.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.25 From the CIF: _reflns_number_total 2446 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2654 Completeness (_total/calc) 92.16% Alert C: < 95% complete RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.107
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

The structures of compounds in the system of lanthanide, sulfide, silicon and halogen have been one of our focuses over the last two years. Up to now, the following homologue groups have been published: the lanthanide iodine thiosilicates Ln3I[SiS4]2 (Ln = La—Nd, Sm and Tb) (Gauthier et al., 1998a,b, Hatscher & Urland, 2001, 2002c), the lanthanide bromide thiosilicates Ln3Br[SiS4]2 (Ln = La—Nd, Sm and Gd) (Hatscher & Urland 2002a), and the lanthanide chloride thiosilicates Ln3Cl[SiS4]2 (Ln = La—Pr) (Hatscher & Urland, 2002b), all crystallizing in the monoclinic space group C2/c. These compounds are isotypic to the so called A-type of the lanthanide chloride oxosilicates, first discovered by Gravereau et al. (1988). With Nd3ClS2[SiS4] (Hatscher & Urland, 2002 d), a new compound in this system was published with no oxo analogue so far known. We now present the heavier homologue, viz. Sm3ClS2[SiS4].

Sm3ClS2[SiS4] crystallizes in the orthorhombic space group Pnma. The structure displays two independent crystallographic positions of Si, and four different Sm positions. The Si atoms are surrounded by four sulfide ions each, forming almost undistorted SiS4 tetrahedra which are isolated in the structure, as is usual for the lanthanide thiosilicates (Fig. 1). A common structural feature of the halogenide thiosilicates of the lanthanides is the formation of a chain of halogen atoms through the structure. Whereas in the homologues of the lanthanide chloride oxosilicates these tunnels are along the c axis, in the case of the title compound they are found along [010]. Similar to the Ln3X[SiS4]2 (X = Cl, Br and I), the X atom shows a coordination of three lanthanide atoms. However, in the lanthanide halide thiosilicates of the type Ln3X[SiS4]2, they form an isosceles triangle, whereas in the Ln3ClS2[SiS4] compounds a heavily distorted triangle is found. The Cl atoms are shifted out of the plane of the samarium ions. The weak fixation of the anion in the triangle of cations leads to the enlargement of the U22 displacement parameter along the direction of the chain. The Sm1, Sm2 and Sm4 ions are coordinated by eight anions, Sm3 by seven. The Sm1 surrounding polyhedron is made up by six sulfides and two chloride, and the one around Sm4 by seven sulfides and one chloride. The other ones only have sulfide ligands. The dominant connection motif are channels made up by Sm1 and Sm4 elements along [001]. These channels show alternating polyhedra of Sm1 and Sm4, each connected via edges (Fig. 2). In the space in the centre, double strings of corner-sharing Sm2 and Sm3-polyhedra can be found (Fig. 3).

Experimental top

Single crystals of the title compound were prepared from the elements. Samarium metal chips (StremChem, 99.9%), sulfur powder (Aldrich, 99.98%), silicon powder (Merck, >99%), and chlorine gas (Riedel-de Haën, >99%) were added in a quartz glass tube in a molar ratio of 1:2:0.3:~0.3. The ampoule was evacuated, sealed, and heated for 10 d in a two-zone furnace with its ends held at temperatures of 1273 and 1073 K. After cooling, a few air-stable orange crystals were obtained.

Refinement top

Tests in space groups with lower symmetry do not improve the residuals and lead to no improvement of the structural solution.

Computing details top

Data collection: IPDS Software (Stoe & Cie, 1998); cell refinement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the crystal structure of Sm3ClS2[SiS4]. The Si atoms are hidden in SiS4 tetrahedra.
[Figure 2] Fig. 2. View on the framework made up by Sm1 and Sm4 polyhedra along [010]. The Sm1 polyhedra are marked yellow and the Sm4 polyhedra blue.
[Figure 3] Fig. 3. View of a ring of Sm1 (yellow) and Sm4 (blue) polyhedra with the double string of Sm2 and Sm3.
samarium chloride ortho-thiosilicate top
Crystal data top
Sm3ClS2(SiS4)Dx = 4.620 Mg m3
Mr = 706.95Melting point: not measured K
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 7998 reflections
a = 12.300 (2) Åθ = 5.1–56.1°
b = 10.290 (2) ŵ = 18.65 mm1
c = 16.061 (3) ÅT = 293 K
V = 2032.8 (7) Å3Slab, orange
Z = 80.24 × 0.18 × 0.11 mm
F(000) = 2504
Data collection top
Stoe IPDS
diffractometer
2446 independent reflections
Radiation source: fine-focus sealed tube2041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
Detector resolution: 60 pixels mm-1θmax = 28.3°, θmin = 2.5°
240 exposures, Δ ϕ 1.2 ° scansh = 1616
Absorption correction: gaussian
(X-RED; Stoe & Cie, 1998)
k = 1313
Tmin = 0.03, Tmax = 0.13l = 2121
32851 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0111P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.038(Δ/σ)max = 0.001
S = 0.90Δρmax = 1.15 e Å3
2446 reflectionsΔρmin = 1.47 e Å3
116 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00138 (3)
Crystal data top
Sm3ClS2(SiS4)V = 2032.8 (7) Å3
Mr = 706.95Z = 8
Orthorhombic, PnmaMo Kα radiation
a = 12.300 (2) ŵ = 18.65 mm1
b = 10.290 (2) ÅT = 293 K
c = 16.061 (3) Å0.24 × 0.18 × 0.11 mm
Data collection top
Stoe IPDS
diffractometer
2446 independent reflections
Absorption correction: gaussian
(X-RED; Stoe & Cie, 1998)
2041 reflections with I > 2σ(I)
Tmin = 0.03, Tmax = 0.13Rint = 0.107
32851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020116 parameters
wR(F2) = 0.0380 restraints
S = 0.90Δρmax = 1.15 e Å3
2446 reflectionsΔρmin = 1.47 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.883659 (19)0.03529 (2)0.611482 (16)0.01023 (6)
Sm20.61418 (3)0.25000.62429 (2)0.00953 (8)
Sm30.37642 (3)0.25000.36265 (2)0.00903 (8)
Sm40.68727 (2)0.04288 (2)0.404352 (16)0.01294 (7)
Cl10.10394 (9)0.04629 (12)0.56010 (8)0.0173 (2)
Si10.88531 (14)0.75000.73933 (11)0.0085 (3)
Si20.83459 (14)0.25000.77794 (11)0.0085 (3)
S10.56346 (12)0.25000.45292 (10)0.0098 (3)
S20.37905 (13)0.25000.59584 (10)0.0131 (3)
S30.73771 (9)0.08870 (11)0.74619 (8)0.0106 (2)
S40.97444 (9)0.91899 (10)0.76918 (7)0.0103 (2)
S50.81591 (13)0.25000.52818 (11)0.0125 (3)
S60.26988 (12)0.25000.19945 (10)0.0106 (3)
S70.65556 (10)0.99036 (11)0.56796 (7)0.0116 (2)
S80.85757 (13)0.75000.61027 (10)0.0105 (3)
S90.98042 (12)0.25000.70888 (11)0.0109 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.01080 (11)0.00982 (11)0.01006 (13)0.00027 (8)0.00025 (9)0.00076 (8)
Sm20.00896 (14)0.01006 (15)0.00957 (17)0.0000.00092 (13)0.000
Sm30.00788 (14)0.00833 (14)0.01088 (17)0.0000.00027 (13)0.000
Sm40.01507 (12)0.01394 (11)0.00981 (13)0.00417 (9)0.00122 (10)0.00240 (9)
Cl10.0112 (5)0.0275 (6)0.0131 (6)0.0022 (4)0.0004 (5)0.0048 (5)
Si10.0085 (8)0.0087 (7)0.0084 (9)0.0000.0013 (7)0.000
Si20.0085 (8)0.0091 (8)0.0079 (9)0.0000.0015 (7)0.000
S10.0083 (7)0.0111 (7)0.0099 (8)0.0000.0002 (6)0.000
S20.0119 (7)0.0181 (7)0.0092 (8)0.0000.0017 (7)0.000
S30.0098 (5)0.0107 (5)0.0113 (6)0.0008 (4)0.0007 (4)0.0000 (4)
S40.0100 (5)0.0092 (5)0.0117 (6)0.0008 (4)0.0018 (4)0.0002 (4)
S50.0128 (7)0.0099 (7)0.0148 (9)0.0000.0000 (7)0.000
S60.0096 (7)0.0125 (7)0.0096 (8)0.0000.0003 (6)0.000
S70.0160 (5)0.0085 (5)0.0104 (6)0.0016 (4)0.0003 (5)0.0009 (4)
S80.0134 (7)0.0099 (7)0.0082 (8)0.0000.0009 (6)0.000
S90.0093 (7)0.0109 (7)0.0126 (8)0.0000.0012 (6)0.000
Geometric parameters (Å, º) top
Sm1—S52.7140 (11)Cl1—Sm4ii2.7862 (12)
Sm1—Cl1i2.8346 (12)Cl1—Sm1xiii2.8346 (12)
Sm1—S32.8646 (13)Cl1—Sm1ii2.8847 (14)
Sm1—Cl1ii2.8847 (14)Si1—S82.101 (2)
Sm1—S7iii2.9280 (13)Si1—S42.1109 (15)
Sm1—S8iii2.9532 (7)Si1—S4iv2.1109 (15)
Sm1—S92.9572 (12)Si1—S6viii2.147 (2)
Sm1—S4iii3.0156 (13)Si2—S2xiv2.100 (2)
Sm1—Sm23.9888 (6)Si2—S32.1060 (16)
Sm2—S12.8222 (18)Si2—S3v2.1060 (15)
Sm2—S7iii2.8663 (12)Si2—S92.109 (2)
Sm2—S7iv2.8663 (12)S1—Sm4v2.7331 (10)
Sm2—S52.9223 (17)S2—Si2vi2.100 (2)
Sm2—S22.9279 (17)S2—Sm4ii3.1223 (8)
Sm2—S3v2.9827 (12)S2—Sm4xv3.1223 (8)
Sm2—S32.9827 (12)S3—Sm4xvi3.0228 (13)
Sm2—S9vi3.1442 (18)S4—Sm3xvii2.9398 (12)
Sm2—Sm1v3.9888 (6)S4—Sm4xvii2.9704 (12)
Sm3—S12.7193 (16)S4—Sm1xviii3.0156 (13)
Sm3—S7vii2.7412 (12)S5—Sm1v2.7140 (11)
Sm3—S7viii2.7412 (12)S5—Sm4v3.3168 (14)
Sm3—S8viii2.9107 (16)S6—Si1viii2.147 (2)
Sm3—S62.9305 (17)S6—Sm4xix2.8904 (12)
Sm3—S4ix2.9398 (12)S6—Sm4xx2.8904 (12)
Sm3—S4x2.9398 (12)S7—Sm4xviii2.7109 (13)
Sm4—S7iii2.7109 (13)S7—Sm3viii2.7412 (12)
Sm4—S12.7331 (10)S7—Sm2xviii2.8663 (12)
Sm4—Cl1ii2.7862 (12)S7—Sm1xviii2.9280 (13)
Sm4—S6xi2.8904 (12)S8—Sm3viii2.9107 (16)
Sm4—S4x2.9704 (12)S8—Sm1xviii2.9532 (6)
Sm4—S3xii3.0228 (13)S8—Sm1v2.9532 (7)
Sm4—S2ii3.1223 (8)S9—Sm1v2.9572 (12)
Sm4—S53.3168 (14)S9—Sm2xiv3.1442 (18)
S5—Sm1—Cl1i96.74 (4)S7iii—Sm4—S178.39 (4)
S5—Sm1—S391.36 (4)S7iii—Sm4—Cl1ii82.43 (4)
Cl1i—Sm1—S3144.22 (4)S1—Sm4—Cl1ii135.39 (4)
S5—Sm1—Cl1ii77.42 (4)S7iii—Sm4—S6xi139.17 (4)
Cl1i—Sm1—Cl1ii71.52 (4)S1—Sm4—S6xi77.61 (4)
S3—Sm1—Cl1ii144.14 (3)Cl1ii—Sm4—S6xi92.12 (4)
S5—Sm1—S7iii73.54 (4)S7iii—Sm4—S4x129.67 (4)
Cl1i—Sm1—S7iii148.50 (4)S1—Sm4—S4x74.48 (4)
S3—Sm1—S7iii67.05 (3)Cl1ii—Sm4—S4x144.14 (4)
Cl1ii—Sm1—S7iii77.10 (3)S6xi—Sm4—S4x73.53 (4)
S5—Sm1—S8iii140.59 (4)S7iii—Sm4—S3xii140.28 (3)
Cl1i—Sm1—S8iii98.14 (4)S1—Sm4—S3xii139.40 (4)
S3—Sm1—S8iii97.33 (4)Cl1ii—Sm4—S3xii75.13 (3)
Cl1ii—Sm1—S8iii73.15 (4)S6xi—Sm4—S3xii74.83 (4)
S7iii—Sm1—S8iii74.77 (4)S4x—Sm4—S3xii69.48 (3)
S5—Sm1—S977.06 (4)S7iii—Sm4—S2ii76.76 (4)
Cl1i—Sm1—S974.90 (4)S1—Sm4—S2ii127.40 (4)
S3—Sm1—S973.10 (4)Cl1ii—Sm4—S2ii85.59 (4)
Cl1ii—Sm1—S9134.54 (4)S6xi—Sm4—S2ii143.42 (4)
S7iii—Sm1—S9129.04 (4)S4x—Sm4—S2ii87.24 (4)
S8iii—Sm1—S9142.18 (4)S3xii—Sm4—S2ii69.30 (4)
S5—Sm1—S4iii148.29 (4)S7iii—Sm4—S567.39 (4)
Cl1i—Sm1—S4iii84.63 (3)S1—Sm4—S566.02 (4)
S3—Sm1—S4iii70.96 (3)Cl1ii—Sm4—S569.45 (3)
Cl1ii—Sm1—S4iii131.86 (3)S6xi—Sm4—S572.80 (4)
S7iii—Sm1—S4iii119.51 (3)S4x—Sm4—S5132.28 (3)
S8iii—Sm1—S4iii69.59 (4)S3xii—Sm4—S5130.24 (4)
S9—Sm1—S4iii72.73 (3)S2ii—Sm4—S5138.20 (4)
S5—Sm1—Sm247.11 (4)Sm4ii—Cl1—Sm1xiii143.92 (5)
Cl1i—Sm1—Sm2141.92 (3)Sm4ii—Cl1—Sm1ii92.93 (4)
S3—Sm1—Sm248.24 (2)Sm1xiii—Cl1—Sm1ii108.48 (4)
Cl1ii—Sm1—Sm2104.74 (2)S8—Si1—S4107.97 (7)
S7iii—Sm1—Sm245.86 (2)S8—Si1—S4iv107.97 (7)
S8iii—Sm1—Sm2117.43 (3)S4—Si1—S4iv110.94 (10)
S9—Sm1—Sm283.88 (3)S8—Si1—S6viii107.90 (10)
S4iii—Sm1—Sm2118.96 (2)S4—Si1—S6viii110.96 (7)
S1—Sm2—S7iii74.42 (3)S4iv—Si1—S6viii110.96 (7)
S1—Sm2—S7iv74.42 (3)S2xiv—Si2—S3112.40 (7)
S7iii—Sm2—S7iv137.53 (5)S2xiv—Si2—S3v112.40 (7)
S1—Sm2—S570.88 (5)S3—Si2—S3v104.03 (10)
S7iii—Sm2—S571.49 (3)S2xiv—Si2—S9106.64 (10)
S7iv—Sm2—S571.49 (3)S3—Si2—S9110.73 (7)
S1—Sm2—S268.25 (5)S3v—Si2—S9110.73 (7)
S7iii—Sm2—S297.25 (3)Sm3—S1—Sm4v108.62 (4)
S7iv—Sm2—S297.25 (3)Sm3—S1—Sm4108.62 (4)
S5—Sm2—S2139.13 (5)Sm4v—S1—Sm4102.49 (5)
S1—Sm2—S3v138.83 (3)Sm3—S1—Sm2134.99 (6)
S7iii—Sm2—S3v129.45 (3)Sm4v—S1—Sm298.93 (4)
S7iv—Sm2—S3v66.30 (3)Sm4—S1—Sm298.93 (4)
S5—Sm2—S3v85.08 (4)Si2vi—S2—Sm296.12 (8)
S2—Sm2—S3v127.27 (3)Si2vi—S2—Sm4ii86.15 (3)
S1—Sm2—S3138.83 (3)Sm2—S2—Sm4ii104.97 (3)
S7iii—Sm2—S366.30 (3)Si2vi—S2—Sm4xv86.15 (3)
S7iv—Sm2—S3129.45 (3)Sm2—S2—Sm4xv104.96 (3)
S5—Sm2—S385.08 (4)Sm4ii—S2—Sm4xv149.71 (6)
S2—Sm2—S3127.27 (3)Si2—S3—Sm188.82 (6)
S3v—Sm2—S367.63 (5)Si2—S3—Sm290.49 (6)
S1—Sm2—S9vi135.68 (4)Sm1—S3—Sm286.00 (4)
S7iii—Sm2—S9vi111.22 (2)Si2—S3—Sm4xvi88.67 (6)
S7iv—Sm2—S9vi111.22 (2)Sm1—S3—Sm4xvi110.94 (4)
S5—Sm2—S9vi153.44 (5)Sm2—S3—Sm4xvi163.01 (5)
S2—Sm2—S9vi67.43 (4)Si1—S4—Sm3xvii87.29 (5)
S3v—Sm2—S9vi72.97 (4)Si1—S4—Sm4xvii85.82 (6)
S3—Sm2—S9vi72.97 (4)Sm3xvii—S4—Sm4xvii97.05 (4)
S1—Sm2—Sm1v97.66 (3)Si1—S4—Sm1xviii86.78 (6)
S7iii—Sm2—Sm1v110.64 (3)Sm3xvii—S4—Sm1xviii153.46 (4)
S7iv—Sm2—Sm1v47.14 (2)Sm4xvii—S4—Sm1xviii108.27 (4)
S5—Sm2—Sm1v42.88 (2)Sm1v—S5—Sm1108.99 (6)
S2—Sm2—Sm1v144.364 (13)Sm1v—S5—Sm290.02 (4)
S3v—Sm2—Sm1v45.76 (2)Sm1—S5—Sm290.02 (4)
S3—Sm2—Sm1v85.34 (3)Sm1v—S5—Sm4164.83 (5)
S9vi—Sm2—Sm1v118.60 (2)Sm1—S5—Sm485.350 (18)
S1—Sm2—Sm197.66 (3)Sm2—S5—Sm484.93 (4)
S7iii—Sm2—Sm147.14 (2)Sm1v—S5—Sm4v85.350 (18)
S7iv—Sm2—Sm1110.64 (3)Sm1—S5—Sm4v164.83 (5)
S5—Sm2—Sm142.88 (2)Sm2—S5—Sm4v84.93 (4)
S2—Sm2—Sm1144.364 (13)Sm4—S5—Sm4v79.97 (4)
S3v—Sm2—Sm185.34 (3)Si1viii—S6—Sm4xix87.23 (5)
S3—Sm2—Sm145.76 (2)Si1viii—S6—Sm4xx87.23 (5)
S9vi—Sm2—Sm1118.60 (2)Sm4xix—S6—Sm4xx95.02 (5)
Sm1v—Sm2—Sm167.272 (16)Si1viii—S6—Sm389.31 (7)
S1—Sm3—S7vii84.53 (3)Sm4xix—S6—Sm3132.31 (3)
S1—Sm3—S7viii84.53 (3)Sm4xx—S6—Sm3132.31 (3)
S7vii—Sm3—S7viii128.92 (5)Sm4xviii—S7—Sm3viii126.48 (4)
S1—Sm3—S8viii139.19 (5)Sm4xviii—S7—Sm2xviii98.38 (4)
S7vii—Sm3—S8viii78.31 (3)Sm3viii—S7—Sm2xviii133.41 (5)
S7viii—Sm3—S8viii78.31 (3)Sm4xviii—S7—Sm1xviii93.56 (4)
S1—Sm3—S6148.78 (5)Sm3viii—S7—Sm1xviii100.54 (4)
S7vii—Sm3—S6107.43 (3)Sm2xviii—S7—Sm1xviii87.00 (3)
S7viii—Sm3—S6107.43 (3)Si1—S8—Sm3viii90.76 (7)
S8viii—Sm3—S672.03 (5)Si1—S8—Sm1xviii88.62 (3)
S1—Sm3—S4ix75.19 (4)Sm3viii—S8—Sm1xviii96.11 (3)
S7vii—Sm3—S4ix76.31 (3)Si1—S8—Sm1v88.62 (3)
S7viii—Sm3—S4ix146.19 (3)Sm3viii—S8—Sm1v96.11 (3)
S8viii—Sm3—S4ix133.89 (3)Sm1xviii—S8—Sm1v167.50 (6)
S6—Sm3—S4ix79.76 (4)Si2—S9—Sm186.32 (5)
S1—Sm3—S4x75.19 (4)Si2—S9—Sm1v86.32 (5)
S7vii—Sm3—S4x146.19 (3)Sm1—S9—Sm1v96.69 (5)
S7viii—Sm3—S4x76.31 (3)Si2—S9—Sm2xiv89.82 (7)
S8viii—Sm3—S4x133.89 (3)Sm1—S9—Sm2xiv131.40 (3)
S6—Sm3—S4x79.76 (4)Sm1v—S9—Sm2xiv131.40 (3)
S4ix—Sm3—S4x72.53 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x, y+3/2, z; (v) x, y+1/2, z; (vi) x1/2, y, z+3/2; (vii) x+1, y1/2, z+1; (viii) x+1, y+1, z+1; (ix) x+3/2, y1/2, z1/2; (x) x+3/2, y+1, z1/2; (xi) x+1/2, y, z+1/2; (xii) x+3/2, y, z1/2; (xiii) x1, y, z; (xiv) x+1/2, y, z+3/2; (xv) x+1, y+1/2, z+1; (xvi) x+3/2, y, z+1/2; (xvii) x+3/2, y+1, z+1/2; (xviii) x, y+1, z; (xix) x1/2, y, z+1/2; (xx) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaSm3ClS2(SiS4)
Mr706.95
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)12.300 (2), 10.290 (2), 16.061 (3)
V3)2032.8 (7)
Z8
Radiation typeMo Kα
µ (mm1)18.65
Crystal size (mm)0.24 × 0.18 × 0.11
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionGaussian
(X-RED; Stoe & Cie, 1998)
Tmin, Tmax0.03, 0.13
No. of measured, independent and
observed [I > 2σ(I)] reflections
32851, 2446, 2041
Rint0.107
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.038, 0.90
No. of reflections2446
No. of parameters116
Δρmax, Δρmin (e Å3)1.15, 1.47

Computer programs: IPDS Software (Stoe & Cie, 1998), IPDS Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1998), SHELXL97.

Selected bond lengths (Å) top
Sm1—S52.7140 (11)Sm3—S62.9305 (17)
Sm1—Cl1i2.8346 (12)Sm3—S4ix2.9398 (12)
Sm1—S32.8646 (13)Sm3—S4x2.9398 (12)
Sm1—Cl1ii2.8847 (14)Sm4—S7iii2.7109 (13)
Sm1—S7iii2.9280 (13)Sm4—S12.7331 (10)
Sm1—S8iii2.9532 (7)Sm4—Cl1ii2.7862 (12)
Sm1—S92.9572 (12)Sm4—S6xi2.8904 (12)
Sm1—S4iii3.0156 (13)Sm4—S4x2.9704 (12)
Sm2—S12.8222 (18)Sm4—S3xii3.0228 (13)
Sm2—S7iii2.8663 (12)Sm4—S2ii3.1223 (8)
Sm2—S7iv2.8663 (12)Sm4—S53.3168 (14)
Sm2—S52.9223 (17)Si1—S82.101 (2)
Sm2—S22.9279 (17)Si1—S42.1109 (15)
Sm2—S3v2.9827 (12)Si1—S4iv2.1109 (15)
Sm2—S32.9827 (12)Si1—S6viii2.147 (2)
Sm2—S9vi3.1442 (18)Si2—S2xiii2.100 (2)
Sm3—S12.7193 (16)Si2—S32.1060 (16)
Sm3—S7vii2.7412 (12)Si2—S3v2.1060 (15)
Sm3—S7viii2.7412 (12)Si2—S92.109 (2)
Sm3—S8viii2.9107 (16)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x, y+3/2, z; (v) x, y+1/2, z; (vi) x1/2, y, z+3/2; (vii) x+1, y1/2, z+1; (viii) x+1, y+1, z+1; (ix) x+3/2, y1/2, z1/2; (x) x+3/2, y+1, z1/2; (xi) x+1/2, y, z+1/2; (xii) x+3/2, y, z1/2; (xiii) x+1/2, y, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds