Download citation
Download citation
link to html
The title compound, [RhCl(PBz3)2(CO)] [PBz3 = tri­benzyl­phosphine, P(C7H7)3], which is the first reported tri­benzyl­phosphine–rhodium(I) structure, has pseudo-square-planar coordination geometry, with Rh—P bond distances of 2.3164 (15) and 2.3156 (16) Å. The Rh—Cl, Rh—C and C—O bond distances are 2.3654 (15), 1.783 (6) and 1.162 (6) Å, respectively, and the angles P—Rh—P, P—Rh—Cl (2 occurrences) and C—Rh—Cl are 177.67 (6), 90.86 (5), 87.11 (5) and 178.55 (17)°, respectively. Effective cone angles for PBz3 are 170 and 172°, while the Tolman cone angles are 171 and 173°. Each tri­benzyl­phosphine has one benzyl C atom close to the coordination plane, with C—P—Rh—CO torsion angles of −1.6 (3) and −30.2 (3)°, and with the benzyl C atoms in a gauche conformation relative to the P...P axis. DFT (density functional theory) calculations, optimizing the geometry of the complex in the gas phase, approximately reproduce this conformation, showing that it is only slightly affected by the crystal-packing arrangement.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802019980/cf6218sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802019980/cf6218Isup2.hkl
Contains datablock I

CCDC reference: 202284

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.048
  • wR factor = 0.091
  • Data-to-parameter ratio = 10.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
DIFF_020 Alert A _diffrn_standards_interval_count and _diffrn_standards_interval_time are missing. Number of measurements between standards or time (min) between standards. DIFF_022 Alert A _diffrn_standards_decay_% is missing Percentage decrease in standards intensity.
Amber Alert Alert Level B:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 31.66 From the CIF: _reflns_number_total 11180 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 12659 Completeness (_total/calc) 88.32% Alert B: < 90% complete (theta max?)
2 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

Complexes with the general formula trans-[MClXL2] (M = Rh, Ir, Pd, Pt; X = Me, CO; L = tertiary phosphine or arsine) often crystallize with the metal on a crystallographic centre of symmetry, thus imposing a disordered packing arrangement (Otto, 2001; Otto et al., 2000; Chen et al., 1991; Kuwabara & Bau, 1994). This study is part of an investigation aiming to elucidate the factors governing a disordered packing. It should also be noted that, to our knowledge, the title compound, (I), is the first reported rhodium structure containing the PBz3 ligand.

The Rh atom is in a general position and there is no disorder of the Cl—Rh—CO moiety. All angles within the Rh coordination sphere are close to those expected for a square-planar environment (Table 1). There are two intramolecular Rh···H agostic interactions, one on each side of the coordination plane, with Rh···H distances of 3.04 and 2.92 Å and H—Rh—P angles of 75 and 107°, respectively, giving a pseudo-octahedral environment around Rh. High anisotropy is observed for atoms C234 and C235, lying on the periphery of the molecule. This is the result of weak packing forces (H···H, H···C and one H···Cl), allowing for high flexibility of the PBz3 ligands, and is especially observed in one PBz3 ligand, indicating some freedom of packing in this region; it may also explain some observed short C···C distances (Albertsson et al., 1980). The Rh—P, Rh—Cl and Rh—CO bonds, together with bonds in the PBz3 ligand, are within normal ranges for this type of complex (Allen & Kennard, 1993).

The CH2 spacers between the P atom and phenyl rings in the PBz3 ligand introduce additional flexiblility compared to a PPh3 ligand. This increases the ligand cone angle size and is expected to influence, for example, the reactivity of the complex. The individual benzyl groups may have different orientations, resulting in variations in cone-angle sizes, as observed earlier (Ferguson et al., 1978). The most widely used method for describing ligand steric behaviour at a metal centre is the Tolman cone angle (Tolman, 1977), using an M—P bond distance of 2.28 Å, C—H bond distances of 0.97 Å, and 1.2 Å as the van der Waals radius of hydrogen. For the calculation of effective cone angles, actual Rh—P bond distances, as determined from crystallographic data, are used (Otto et al., 2000). Values obtained from effective cone-angle calculations for the title compound, 171 and 173°, are in agreement with the value of 165° proposed by Tolman (1977) for PBz3, and also correlate with recent work (Johansson et al., 2002), where an effective cone angle of 165±12° was postulated. Only one of the benzyl C atoms is used in the cone-angle calculation, while the phenyl rings of the other two substituents contribute to the large cone angle. The cone-angle values may not be a true indication of the ligand influence on the metal centre behaviour, since the phenyl rings used to calculate cone angles are not in the close vicinity of the metal. In Table 2, the title compound is compared with other closely related NiII, PdII and PtII complexes containing two of the bulky tribenzylphosphine ligands in a trans configuration. The Tolman (θT) and effective (θE) cone angles for (I) correlate with those calculated by Johannson et al. (2002), but deviate substantially from some other reported values (Bendiksen et al., 1982).

The two C—P—Rh—CO torsion angles, representing the least deviation from the coordination plane for the title compound, are −1.6 (3) and −30.2 (3)°, i.e. one P—C bond is close to the coordination plane for one of the ligands and one is slightly out of the plane for the other. This was previously observed in trans-[PtCl2(XPh3)2] (X = P, As) (Johansson et al., 2000; Johansson & Otto, 2000), trans-[MX2(PBz3)2] (M = Pt, X = Cl, I, NCS; M = Pd, X = I; Johansson et al., 2002), trans-[PtH(OPh)(PBz3)2] (Seligson et al., 1991) and [PdX2(PBz3)2] (X = N3, CN; Bendiksen et al., 1982). The orientation of the benzyl C atoms relative to the P—Rh—P axis are thus gauche. In previous studies, it was observed that the orientation of the benzyl C atoms relative to the P—M—P axis were anti, implying a pseudo-inversion centre in the complex, except in the case of trans-[Pt(NCS)2(PBz3)2], where a gauche comformation was also observed (Johansson et al., 2002). DFT calculations on the title complex in the gas phase result in C—P—Rh—CO torsion angles of −17.4 and 6.2°, which are fairly close to the observed values, implying that the conformation in the crystal structure is only slightly affected by the packing arrangement. A local minimum is also observed when the P—C bond is close to the coordination plane, but with the C—P—Rh—Cl torsion angles close to zero, i.e. Cl—Rh—CO is rotated by approximately 180° compared to the global minimum. The energy difference between the global and local minima is 18.5 kJ mol−1, which may be too large for a disordered packing for the title compound. The global minimum structure has one agostic interaction on one side of the coordination plane (Rh···H = 2.59 Å) and two on the other side (Rh···H = 3.05 and 3.12 Å). The calculations indicate interactions between the metal and the H atoms, since the Mulliken charges are 0.19 for these three H atoms, compared to 0.11 for H atoms further away.

Experimental top

[RhCl(CO)2]2 (Lebedev National Rubber Research Institute) and PBz3 (Aldrich) were used as received. PBz3 (157 mg, 0.52 mmol), dissolved in acetone (5 ml), was added to a solution of [RhCl(CO)2]2 (50 mg, 0.13 mmol) in acetone (10 ml). Slow evaporation of the solution yielded yellow crystals suitable for X-ray analysis. 31P NMR (CDCl3): 18.1 p.p.m. [d, 1J(Rh–P) = 124 Hz]; IR (DCM), ν(CO): 1968 cm−1. Quantum chemical geometry optimizations were performed with the density-functional B—P86 method, as implemented in the Turbomole 5.5 software (Hertwig & Koch, 1997; Treutler & Ahlrichs, 1995). Basis sets at the def-SVP level were used for Rh, Cl and P, and at 6–31g* for the other atoms. Two starting structures, one direct from the crystal structure data and one modified with an anti conformation along the P···P axis, reproduced approximately the same final geometry of the complex in the gas phase. However, a starting structure with O—C—Rh—Cl rotated by approximately 180° compared to the crystal structure found a local minimum in this region, with a somewhat larger energy compared to the global minimum. Accurate energies were calculated with single-point calculations on the optimized structures, by the B3LYP method, and using basis sets def-TZVPP for Rh and def-TZVP for the other atoms, as implemented in Turbomole 5.5.

Refinement top

The first 50 frames of data were recollected at the end of the data collection to check for decay; none was found. Both the minimum and maximum residual electron densities lie within 1 Å of the Rh atom.

Computing details top

Data collection: SMART (Siemens, 1998); cell refinement: SAINT; data reduction: SAINT (Siemens, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001); molecular graphics: DIAMOND (Brandenburg & Berndt, 2000); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids (30% probability). H atoms have been omitted for clarity.
trans-Carbonylchlorobis(tribenzylphosphine)rhodium(I) top
Crystal data top
[RhCl(C21H21P)2(CO)]Z = 2
Mr = 775.11F(000) = 800.000
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Melting point: not measured K
a = 10.031 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.165 (1) ÅCell parameters from 1993 reflections
c = 18.9910 (19) Åθ = 2–21°
α = 93.36 (3)°µ = 0.64 mm1
β = 90.37 (3)°T = 293 K
γ = 103.69 (3)°Cuboid, yellow
V = 1877.8 (4) Å30.09 × 0.08 × 0.03 mm
Data collection top
Bruker SMART
diffractometer
4389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 31.7°, θmin = 1.1°
Absorption correction: multi-scan
SADABS (Siemens, 1998)
h = 1414
Tmin = 0.85, Tmax = 0.95k = 1414
19116 measured reflectionsl = 2127
11180 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0462P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max < 0.001
4389 reflectionsΔρmax = 0.78 e Å3
433 parametersΔρmin = 0.50 e Å3
Crystal data top
[RhCl(C21H21P)2(CO)]γ = 103.69 (3)°
Mr = 775.11V = 1877.8 (4) Å3
Triclinic, P1Z = 2
a = 10.031 (1) ÅMo Kα radiation
b = 10.165 (1) ŵ = 0.64 mm1
c = 18.9910 (19) ÅT = 293 K
α = 93.36 (3)°0.09 × 0.08 × 0.03 mm
β = 90.37 (3)°
Data collection top
Bruker SMART
diffractometer
11180 independent reflections
Absorption correction: multi-scan
SADABS (Siemens, 1998)
4389 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.95Rint = 0.032
19116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048433 parameters
wR(F2) = 0.091H-atom parameters constrained
S = 0.88Δρmax = 0.78 e Å3
4389 reflectionsΔρmin = 0.50 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.86236 (14)0.18462 (13)0.12054 (7)0.0350
P20.90376 (16)0.25692 (15)0.36357 (8)0.0447
Rh0.88696 (5)0.21895 (5)0.24206 (2)0.0376
C10.9621 (6)0.0770 (6)0.2455 (3)0.0462
O11.0123 (5)0.0146 (5)0.2480 (2)0.0773
C130.7027 (5)0.0637 (5)0.0905 (3)0.0436
C1310.6815 (5)0.0726 (5)0.1212 (3)0.0388
C1360.6946 (6)0.1855 (6)0.0804 (3)0.0581
C1350.6788 (7)0.3097 (6)0.1107 (5)0.0784
C1340.6478 (7)0.3214 (8)0.1805 (5)0.0751
C1330.6309 (6)0.2110 (8)0.2199 (4)0.0667
C1320.6478 (6)0.0874 (6)0.1919 (3)0.0520
C110.8541 (5)0.3351 (5)0.0722 (3)0.0406
C1110.8369 (6)0.3171 (5)0.0063 (3)0.0424
C1160.9502 (6)0.3275 (5)0.0498 (3)0.0473
C1150.9371 (7)0.3134 (6)0.1230 (3)0.0581
C1140.8080 (9)0.2865 (7)0.1539 (3)0.0711
C1130.6956 (7)0.2755 (7)0.1121 (4)0.0694
C1120.7084 (6)0.2902 (6)0.0396 (3)0.0558
C120.9898 (5)0.1099 (5)0.0755 (3)0.0408
C1211.1392 (5)0.1662 (5)0.0967 (3)0.0404
C1221.2027 (6)0.3037 (6)0.0969 (3)0.0485
C1231.3410 (6)0.3505 (6)0.1145 (3)0.0603
C1241.4169 (6)0.2595 (8)0.1331 (4)0.0721
C1251.3558 (6)0.1230 (7)0.1325 (4)0.0724
C1261.2173 (6)0.0786 (6)0.1149 (3)0.0573
C220.9754 (6)0.1367 (6)0.4126 (3)0.0471
C2211.0252 (6)0.1771 (5)0.4876 (3)0.0466
C2260.9353 (6)0.1775 (6)0.5436 (3)0.0551
C2250.9842 (8)0.2159 (7)0.6121 (3)0.0701
C2241.1217 (9)0.2526 (7)0.6257 (4)0.0789
C2231.2112 (7)0.2497 (7)0.5734 (4)0.0789
C2221.1630 (6)0.2112 (6)0.5042 (3)0.0610
C230.7388 (6)0.2640 (6)0.4049 (3)0.0553
C2310.6183 (7)0.1462 (9)0.3861 (3)0.0670
C2320.5998 (8)0.0281 (9)0.4162 (5)0.0951
C2330.4885 (11)0.0784 (11)0.4002 (6)0.1341
C2340.3957 (14)0.0660 (17)0.3533 (7)0.1707
C2350.4062 (12)0.0493 (19)0.3216 (6)0.1776
C2360.520 (1)0.1611 (12)0.3371 (4)0.1243
C211.0045 (7)0.4256 (6)0.3934 (3)0.0595
C2111.1560 (7)0.4591 (5)0.3764 (3)0.0543
C2161.2544 (8)0.4979 (7)0.4291 (3)0.0721
C2151.3903 (9)0.5295 (8)0.4146 (4)0.0873
C2141.4308 (8)0.5222 (8)0.3477 (5)0.0981
C2131.337 (1)0.4901 (9)0.2934 (4)0.1207
C2121.1984 (8)0.4570 (8)0.3086 (4)0.0946
Cl0.78656 (19)0.40721 (17)0.24058 (8)0.0720
H150.70420.05020.03800.0516*
H160.62380.10360.10420.0516*
H1360.71530.17830.02910.0680*
H1350.69080.39080.08130.0937*
H1340.63740.41040.20220.0917*
H1330.60560.22020.27060.0772*
H1320.63590.00720.22230.0600*
H110.94200.40450.08280.0507*
H120.77550.36940.09080.0507*
H1161.04410.34580.02750.0536*
H1151.02020.32280.15280.0683*
H1140.79650.27490.20650.0822*
H1130.60200.25620.13480.0826*
H1120.62430.28150.01050.0675*
H140.96670.01100.08400.0484*
H130.98080.12180.02400.0484*
H1221.14800.36980.08430.0581*
H1231.38600.44940.11350.0695*
H1241.51600.29310.14710.0851*
H1251.41060.05660.14450.0894*
H1261.17280.02050.11560.0699*
H231.05490.11870.38550.0577*
H240.90210.05080.41370.0577*
H2260.83380.14960.53410.0652*
H2250.91820.21660.65150.0859*
H2241.15640.28160.67510.0926*
H2231.31200.27550.58420.0920*
H2221.23040.20820.46580.0726*
H250.75320.26940.45720.0691*
H260.71370.34840.39050.0691*
H2320.66940.01600.45170.1097*
H2330.47770.16540.42420.1501*
H2340.31660.14460.34130.1806*
H2350.33340.05690.28680.2002*
H2360.52940.24840.31340.1485*
H220.99710.43510.44580.0711*
H210.96260.49350.37120.0711*
H2161.22530.50300.47920.0806*
H2151.46010.55810.45380.0978*
H2141.53110.54080.33730.1088*
H2131.36790.48990.24330.1246*
H2121.12860.43120.26910.1008*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0357 (9)0.0339 (8)0.0363 (9)0.0098 (7)0.0020 (7)0.0028 (7)
P20.0577 (11)0.0422 (9)0.0360 (9)0.0167 (8)0.0030 (8)0.0019 (7)
Rh0.0442 (3)0.0367 (3)0.0341 (3)0.0140 (2)0.0004 (2)0.00075 (18)
C10.064 (4)0.050 (4)0.028 (3)0.018 (3)0.009 (3)0.013 (3)
O10.112 (4)0.080 (3)0.062 (3)0.064 (3)0.013 (3)0.018 (2)
C130.037 (3)0.047 (3)0.046 (3)0.008 (3)0.000 (3)0.004 (3)
C1310.028 (3)0.040 (3)0.045 (3)0.003 (3)0.003 (3)0.001 (3)
C1360.050 (4)0.055 (4)0.066 (4)0.006 (3)0.019 (3)0.002 (3)
C1350.056 (5)0.031 (4)0.148 (8)0.011 (3)0.026 (5)0.004 (4)
C1340.047 (4)0.071 (5)0.112 (7)0.011 (4)0.004 (4)0.050 (5)
C1330.049 (4)0.080 (5)0.064 (5)0.002 (4)0.011 (3)0.027 (4)
C1320.047 (4)0.055 (4)0.048 (4)0.002 (3)0.001 (3)0.010 (3)
C110.046 (4)0.037 (3)0.041 (3)0.014 (3)0.003 (3)0.005 (3)
C1110.050 (4)0.030 (3)0.047 (4)0.009 (3)0.003 (3)0.008 (3)
C1160.045 (4)0.046 (3)0.044 (4)0.005 (3)0.003 (3)0.011 (3)
C1150.068 (5)0.057 (4)0.046 (4)0.007 (3)0.005 (3)0.008 (3)
C1140.104 (6)0.063 (5)0.039 (4)0.005 (4)0.019 (4)0.006 (3)
C1130.065 (5)0.070 (5)0.071 (5)0.010 (4)0.028 (4)0.014 (4)
C1120.037 (4)0.064 (4)0.069 (5)0.011 (3)0.000 (3)0.023 (3)
C120.041 (3)0.041 (3)0.040 (3)0.009 (3)0.004 (3)0.000 (3)
C1210.037 (3)0.051 (4)0.034 (3)0.013 (3)0.009 (2)0.001 (3)
C1220.044 (4)0.044 (4)0.058 (4)0.011 (3)0.003 (3)0.003 (3)
C1230.047 (4)0.057 (4)0.071 (5)0.003 (3)0.001 (3)0.011 (3)
C1240.030 (4)0.096 (6)0.087 (5)0.012 (4)0.002 (3)0.006 (4)
C1250.038 (4)0.081 (5)0.105 (6)0.023 (4)0.012 (4)0.026 (4)
C1260.045 (4)0.060 (4)0.071 (5)0.017 (3)0.010 (3)0.014 (3)
C220.054 (4)0.050 (4)0.039 (3)0.016 (3)0.000 (3)0.006 (3)
C2210.056 (4)0.036 (3)0.047 (4)0.009 (3)0.007 (3)0.006 (3)
C2260.058 (4)0.058 (4)0.047 (4)0.010 (3)0.009 (3)0.005 (3)
C2250.100 (6)0.072 (5)0.044 (4)0.031 (4)0.005 (4)0.003 (3)
C2240.100 (7)0.062 (5)0.070 (5)0.015 (5)0.043 (5)0.011 (4)
C2230.057 (5)0.078 (5)0.095 (6)0.003 (4)0.033 (4)0.009 (5)
C2220.049 (4)0.062 (4)0.072 (5)0.008 (3)0.008 (3)0.016 (3)
C230.069 (5)0.063 (4)0.041 (4)0.031 (4)0.002 (3)0.001 (3)
C2310.052 (5)0.108 (6)0.043 (4)0.026 (4)0.007 (3)0.011 (4)
C2320.067 (6)0.079 (6)0.129 (8)0.002 (5)0.003 (5)0.005 (5)
C2330.090 (8)0.124 (9)0.166 (12)0.013 (7)0.021 (7)0.023 (8)
C2340.090 (9)0.260 (18)0.102 (11)0.059 (11)0.036 (8)0.079 (11)
C2350.055 (7)0.37 (2)0.081 (8)0.012 (11)0.012 (6)0.03 (1)
C2360.081 (7)0.216 (11)0.077 (6)0.028 (7)0.001 (5)0.040 (7)
C210.082 (5)0.049 (4)0.047 (4)0.017 (4)0.000 (3)0.007 (3)
C2110.088 (5)0.031 (3)0.037 (4)0.003 (3)0.002 (3)0.006 (3)
C2160.094 (6)0.061 (5)0.047 (4)0.011 (4)0.009 (4)0.004 (3)
C2150.093 (7)0.084 (6)0.068 (6)0.015 (5)0.019 (5)0.018 (4)
C2140.076 (6)0.086 (6)0.112 (7)0.018 (5)0.007 (6)0.009 (5)
C2130.113 (8)0.140 (8)0.060 (5)0.060 (6)0.018 (5)0.030 (5)
C2120.089 (6)0.114 (7)0.050 (5)0.036 (5)0.009 (4)0.001 (4)
Cl0.1119 (15)0.0718 (11)0.052 (1)0.0608 (11)0.0004 (9)0.0020 (8)
Geometric parameters (Å, º) top
Rh—P12.3164 (15)C124—C1251.377 (9)
P1—C131.837 (5)C124—H1241.000
P1—C111.847 (5)C125—C1261.387 (8)
P1—C121.827 (5)C125—H1251.001
Rh—P22.3156 (16)C126—H1261.002
P2—C221.849 (5)C22—C2211.506 (7)
P2—C231.851 (6)C22—H231.000
P2—C211.828 (6)C22—H241.001
Rh—C11.783 (6)C221—C2261.399 (8)
Rh—Cl2.3654 (15)C221—C2221.373 (8)
C1—O11.162 (6)C226—C2251.388 (8)
C13—C1311.504 (7)C226—H2261.003
C13—H150.999C225—C2241.360 (9)
C13—H161.001C225—H2251.003
C131—C1361.379 (7)C224—C2231.35 (1)
C131—C1321.395 (7)C224—H2241.001
C136—C1351.393 (8)C223—C2221.399 (9)
C136—H1361.002C223—H2231.000
C135—C1341.368 (9)C222—H2221.001
C135—H1351.000C23—C2311.511 (9)
C134—C1331.357 (9)C23—H250.999
C134—H1341.000C23—H261.001
C133—C1321.367 (8)C231—C2321.333 (9)
C133—H1331.001C231—C2361.39 (1)
C132—H1321.001C232—C2331.377 (11)
C11—C1111.495 (7)C232—H2321.002
C11—H111.001C233—C2341.316 (16)
C11—H120.994C233—H2331.003
C111—C1161.397 (7)C234—C2351.33 (2)
C111—C1121.392 (7)C234—H2340.998
C116—C1151.391 (7)C235—C2361.424 (15)
C116—H1161.001C235—H2351.002
C115—C1141.379 (9)C236—H2361.003
C115—H1151.000C21—C2111.518 (8)
C114—C1131.370 (9)C21—H220.999
C114—H1141.001C21—H210.999
C113—C1121.379 (8)C211—C2161.374 (8)
C113—H1131.001C211—C2121.358 (8)
C112—H1121.002C216—C2151.36 (1)
C12—C1211.515 (7)C216—H2161.000
C12—H141.000C215—C2141.34 (1)
C12—H131.000C215—H2151.000
C121—C1221.392 (7)C214—C2131.36 (1)
C121—C1261.374 (7)C214—H2141.002
C122—C1231.387 (7)C213—C2121.39 (1)
C122—H1221.001C213—H2131.002
C123—C1241.388 (8)C212—H2121.002
C123—H1231.001
Rh—P1—C13114.03 (17)C123—C124—C125120.1 (6)
Rh—P1—C11115.95 (17)C123—C124—H124120.0
C13—P1—C11101.8 (2)C125—C124—H124119.9
Rh—P1—C12116.38 (18)C124—C125—C126119.1 (6)
C13—P1—C12100.9 (2)C124—C125—H125120.5
C11—P1—C12105.8 (2)C126—C125—H125120.4
Rh—P2—C22116.59 (18)C121—C126—C125122.2 (6)
Rh—P2—C23113.43 (19)C121—C126—H126118.9
C22—P2—C23106.6 (3)C125—C126—H126118.9
Rh—P2—C21113.9 (2)P2—C22—C221118.5 (4)
C22—P2—C21105.5 (3)P2—C22—H23107.3
C23—P2—C2199.0 (3)C221—C22—H23107.2
P1—Rh—P2177.67 (6)P2—C22—H24107.2
P1—Rh—C190.54 (17)C221—C22—H24107.1
P2—Rh—C191.48 (17)H23—C22—H24109.4
P1—Rh—Cl90.86 (5)C22—C221—C226122.5 (5)
P2—Rh—Cl87.11 (5)C22—C221—C222120.7 (6)
C1—Rh—Cl178.55 (17)C226—C221—C222116.8 (6)
Rh—C1—O1179.3 (6)C221—C226—C225121.2 (6)
P1—C13—C131114.1 (4)C221—C226—H226119.4
P1—C13—H15108.4C225—C226—H226119.4
C131—C13—H15108.3C226—C225—C224119.9 (7)
P1—C13—H16108.3C226—C225—H225120.1
C131—C13—H16108.3C224—C225—H225120.0
H15—C13—H16109.5C225—C224—C223120.5 (7)
C13—C131—C136121.1 (5)C225—C224—H224119.6
C13—C131—C132120.4 (5)C223—C224—H224119.9
C136—C131—C132118.5 (5)C224—C223—C222120.0 (7)
C131—C136—C135119.9 (6)C224—C223—H223119.8
C131—C136—H136120.0C222—C223—H223120.2
C135—C136—H136120.1C221—C222—C223121.5 (6)
C136—C135—C134120.6 (6)C221—C222—H222119.2
C136—C135—H135119.7C223—C222—H222119.3
C134—C135—H135119.7P2—C23—C231116.4 (4)
C135—C134—C133119.4 (6)P2—C23—H25107.8
C135—C134—H134120.4C231—C23—H25107.7
C133—C134—H134120.2P2—C23—H26107.7
C134—C133—C132121.4 (7)C231—C23—H26107.6
C134—C133—H133119.3H25—C23—H26109.5
C132—C133—H133119.3C23—C231—C232122.5 (7)
C131—C132—C133120.2 (6)C23—C231—C236119.4 (8)
C131—C132—H132119.9C232—C231—C236118.1 (8)
C133—C132—H132119.9C231—C232—C233122.5 (9)
P1—C11—C111117.7 (3)C231—C232—H232118.9
P1—C11—H11107.1C233—C232—H232118.5
C111—C11—H11107.1C232—C233—C234120.0 (13)
P1—C11—H12107.4C232—C233—H233120.2
C111—C11—H12107.5C234—C233—H233119.8
H11—C11—H12109.9C233—C234—C235121.0 (14)
C11—C111—C116121.1 (5)C233—C234—H234119.2
C11—C111—C112122.1 (5)C235—C234—H234119.8
C116—C111—C112116.8 (5)C234—C235—C236120.2 (13)
C111—C116—C115122.2 (5)C234—C235—H235119.6
C111—C116—H116118.9C236—C235—H235120.2
C115—C116—H116118.9C231—C236—C235118.1 (10)
C116—C115—C114119.2 (6)C231—C236—H236120.9
C116—C115—H115120.4C235—C236—H236120.9
C114—C115—H115120.3P2—C21—C211116.9 (4)
C115—C114—C113119.4 (6)P2—C21—H22107.5
C115—C114—H114120.3C211—C21—H22107.6
C113—C114—H114120.3P2—C21—H21107.5
C114—C113—C112121.5 (6)C211—C21—H21107.6
C114—C113—H113119.3H22—C21—H21109.6
C112—C113—H113119.2C21—C211—C216120.9 (6)
C111—C112—C113120.9 (6)C21—C211—C212121.1 (6)
C111—C112—H112119.5C216—C211—C212117.9 (7)
C113—C112—H112119.6C211—C216—C215121.5 (7)
P1—C12—C121117.6 (4)C211—C216—H216119.2
P1—C12—H14107.4C215—C216—H216119.3
C121—C12—H14107.4C216—C215—C214119.9 (7)
P1—C12—H13107.4C216—C215—H215120.1
C121—C12—H13107.3C214—C215—H215120.0
H14—C12—H13109.5C215—C214—C213120.9 (8)
C12—C121—C122122.7 (5)C215—C214—H214119.8
C12—C121—C126119.3 (5)C213—C214—H214119.4
C122—C121—C126118.0 (5)C214—C213—C212118.8 (7)
C121—C122—C123120.9 (5)C214—C213—H213120.6
C121—C122—H122119.6C212—C213—H213120.5
C123—C122—H122119.5C211—C212—C213120.9 (7)
C122—C123—C124119.7 (6)C211—C212—H212119.6
C122—C123—H123120.2C213—C212—H212119.6
C124—C123—H123120.1

Experimental details

Crystal data
Chemical formula[RhCl(C21H21P)2(CO)]
Mr775.11
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.031 (1), 10.165 (1), 18.9910 (19)
α, β, γ (°)93.36 (3), 90.37 (3), 103.69 (3)
V3)1877.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.09 × 0.08 × 0.03
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
SADABS (Siemens, 1998)
Tmin, Tmax0.85, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
19116, 11180, 4389
Rint0.032
(sin θ/λ)max1)0.739
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.091, 0.88
No. of reflections4389
No. of parameters433
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.50

Computer programs: SMART (Siemens, 1998), SAINT (Siemens, 1998), SIR92 (Altomare et al., 1994), CRYSTALS (Watkin et al., 2001), DIAMOND (Brandenburg & Berndt, 2000), CRYSTALS.

Selected geometric parameters (Å, º) top
Rh—P12.3164 (15)Rh—Cl2.3654 (15)
Rh—P22.3156 (16)C1—O11.162 (6)
Rh—C11.783 (6)
P1—Rh—P2177.67 (6)P2—Rh—Cl87.11 (5)
P1—Rh—C190.54 (17)C1—Rh—Cl178.55 (17)
P2—Rh—C191.48 (17)Rh—C1—O1179.3 (6)
P1—Rh—Cl90.86 (5)
Comparison of torsion angles (θTor1 and θTor2), cone angles (θT and θE) and the type of conformation for various trans-[M(X)(Y)(PBz3)2] complexes top
M(X)θTor1(°)θTor2(°)θT(°)θE(°)ConformationReference
Ni(Cl)1.72 (11)-1.72 (11)167
14.05 (8)-14.05 (8)162antii*
Pd(I)0.8 (4)-3.0 (4)157155antiii
Pd(CN)18.63 (5)-18.63 (5)232182antiiii*
Pd(N3)12.24 (5)-12.24 (5)200163antiiii*
Pt(Cl)1.6 (2)-1.6 (2)164162
1.08 (15)-1.08 (15)160160antiii
Pt(I)-2.1 (3)3.9 (3)156155
161163antiii
Pt(NCS)-0.8 (2)-15.2 (2)179178
167165gaucheii
Rh(CO)(Cl)-1.6 (3)-30.2 (3)170171
172173gaucheiv
References: (i) Novoa de Armas et al. (2000); (ii) Johansson et al. (2002); (iii) Bendiksen et al. (1982); (iv) this work. * Calculated data extracted from CSD (Allen & Kennard, 1993).
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds