Download citation
Download citation
link to html
In the structure of the title compound, [Cu(C3H5O3)(C12H8N2)(H2O)]NO3, the CuII ion is five-coordinated through two N atoms of the 1,10-phenanthroline ligand, two O atoms of the lactate anion and a water mol­ecule. The cations are well separated in the unit cell, the shortest metal–metal separation being 6.2127 (8) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802021591/cm6025sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802021591/cm6025Isup2.hkl
Contains datablock I

CCDC reference: 202306

Key indicators

  • Single-crystal X-ray study
  • T = 300 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.036
  • wR factor = 0.098
  • Data-to-parameter ratio = 15.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

A large number of mixed copper chelates of the type [Cu(phen)(O–O)]n+ (n = 0 or 1, phen = different substituted 1,10 phenanthrolines and O–O = acetylacetonate, salycilaldehydate, oxalate or malonate) have been reported. We have studied their relative stability both via solution equilibrium studies, as well as from far IR spectroscopy in the solid state (Gasque, Medina et al., 1999). To validate the latter, isostructurality has first to be established by X-ray diffraction. In this context, most of the crystal structures for the compounds under study have been reported (Fabretti et al., 1985; Kwik et al., 1986; Solans et al., 1987; Su et al., 1995; Gasque, Moreno-Esparza et al., 1999).

Our current interest in relation with this topic is focused on mixed complexes where the O–O ligand is an α-hydroxy acid anion, such as glycolate (Medina et al., 2000) or lactate, of which an example, (I), is presented here.

The asymmetric unit of (I) (Fig. 1) contains one cation and one nitrate anion, both lying on general positions. The copper center is five-coordinated, in a common distorted square-pyramidal geometry, with a τ descriptor (Addison et al., 1984) very close to 0, τ = 0.08. The base of the pyramid is occupied by two O atoms of the racemic lactate ligand and two N atoms of the 1,10-phenanthroline ligand, with the expected coordination bond lengths (Table 1). The metal center is significantly displaced from this plane, the deviation from the calculated least-squares plane (N1, N12, O15 and O18) being 0.2206 (3) Å. This displacement is, for instance, 0.06 Å larger than that observed for the related complex including glycolate instead of lactate (Medina et al., 2000). This difference results from the ability for the nitrate ion to interact with the CuII in the glycolate-containing complex, giving a typical Jahn–Teller distorted octahedral coordination geometry, while in (I), an actual five-coordinated complex is obtained; the shortest separation between the anion and the metallic center is Cu1···O22 of 5.000 (3) Å. Finally, the apical coordination site in (I) is occupied by a water molecule, with a long bond length of 2.2283 (19) Å.

The functionality of the cation, together with the presence of nitrate as anion, greatly favors hydrogen bonding in the crystalline state (Table 2). Thus, the hydroxy group O18—H18 of the lactate ligand forms a remarkably strong hydrogen bond with the carboxylate atom O19 of a symmetry-related cation. Remaining significant O—H···O hydrogen bonds involve the coordinated water molecule. The resulting network is a one-dimensional supramolecular aggregate with [101] as base vector (Fig. 2), the steric hindrance of the 1,10-phenanthroline ligand avoiding inter-chain contacts. These features result in large metal–metal separations in the cell, the shortest Cu···Cu distance being Cu···Cui of 6.2127 (8) Å [symmetry code: (i) 1 − x, −y, 2 − z].

Experimental top

The title compound was obtained by mixing 1 mmol of Cu(NO3)2·2.5H2O (0.233 g) with 1 mmol of 1,10-phenanthroline (0.180 g) in 20 ml of MeOH and adding 1 mmol of lithium lactate (0.096 g) previously dissolved in the minimal amount of water. This solution was left standing and air-stable crystals were collected the following day.

Refinement top

H atoms for water molecule (H1A and H1B) and hydroxyl group (H18) were found in difference maps. The remaining H atoms, bonded to sp2– and sp3-hybridized C atoms, were placed at idealized positions. In the final cycles, all H atoms were constrained to ride on their parent atoms, with Uiso(H) = xUeq(parent), where x = 1.5 for Csp3—H and x = 1.2 for for Csp2—H groups. Constrained distances: methine C—H = 0.98 Å, methyl C—H = 0.96 Å and aryl C—H = 0.93 Å.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1998); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The one-dimensional chains running along [101] formed by hydrogen bonds in (I). Four asymmetric units are displayed and for the sake of clarity, H atoms not involved in this network have been omitted.
Aqua[(±)-lactate-O,O'](1,10-phenanthroline-κ2N,N')copper(II) nitrate top
Crystal data top
[Cu(C3H5O3)(C12H8N2)(H2O)]NO3F(000) = 844
Mr = 412.84Dx = 1.695 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 68 reflections
a = 8.5646 (13) Åθ = 4.8–12.5°
b = 19.985 (3) ŵ = 1.40 mm1
c = 9.7854 (13) ÅT = 300 K
β = 104.960 (11)°Regular prism, blue
V = 1618.2 (4) Å30.62 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker P4
diffractometer
3156 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω scansh = 111
Absorption correction: gaussian
(XSCANS; Siemens, 1996)
k = 251
Tmin = 0.599, Tmax = 0.782l = 1212
4687 measured reflections3 standard reflections every 97 reflections
3706 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: See text
wR(F2) = 0.099H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.9828P]
where P = (Fo2 + 2Fc2)/3
3706 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Cu(C3H5O3)(C12H8N2)(H2O)]NO3V = 1618.2 (4) Å3
Mr = 412.84Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5646 (13) ŵ = 1.40 mm1
b = 19.985 (3) ÅT = 300 K
c = 9.7854 (13) Å0.62 × 0.26 × 0.22 mm
β = 104.960 (11)°
Data collection top
Bruker P4
diffractometer
3156 reflections with I > 2σ(I)
Absorption correction: gaussian
(XSCANS; Siemens, 1996)
Rint = 0.023
Tmin = 0.599, Tmax = 0.7823 standard reflections every 97 reflections
4687 measured reflections intensity decay: 1.5%
3706 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
3706 reflectionsΔρmin = 0.54 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H atoms for water molecule (H1A, H1B) and hydroxyl group (H18) were found on difference maps and refined as remaining H's (Riding)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.32933 (3)0.138442 (13)0.96197 (3)0.03422 (11)
O10.1751 (2)0.19093 (9)1.0800 (2)0.0476 (4)
H1A0.13170.22101.03710.071*
H1B0.24000.20141.16240.071*
N10.1930 (2)0.05822 (10)0.8921 (2)0.0359 (4)
C20.0723 (3)0.05154 (13)0.7765 (3)0.0431 (6)
H2A0.04400.08790.71570.052*
C30.0140 (3)0.00842 (14)0.7428 (3)0.0473 (6)
H3A0.09700.01160.66030.057*
C40.0240 (3)0.06221 (13)0.8314 (3)0.0445 (6)
H4A0.03350.10200.81020.053*
C50.1512 (3)0.05677 (12)0.9551 (3)0.0389 (5)
C60.2008 (3)0.10980 (13)1.0562 (3)0.0458 (6)
H6A0.14780.15081.04130.055*
C70.3247 (3)0.10032 (12)1.1734 (3)0.0463 (6)
H7A0.35570.13541.23720.056*
C80.4089 (3)0.03772 (12)1.2014 (3)0.0391 (5)
C90.5363 (3)0.02492 (14)1.3217 (3)0.0464 (6)
H9A0.57230.05801.38940.056*
C100.6064 (3)0.03711 (14)1.3372 (3)0.0482 (6)
H10A0.69060.04631.41630.058*
C110.5528 (3)0.08664 (13)1.2354 (3)0.0430 (6)
H11A0.60220.12841.24850.052*
N120.4331 (2)0.07592 (10)1.1202 (2)0.0350 (4)
C130.3617 (3)0.01466 (11)1.1040 (2)0.0336 (5)
C140.2321 (3)0.00490 (11)0.9803 (2)0.0336 (5)
O150.2472 (2)0.18721 (8)0.78856 (17)0.0414 (4)
C160.3121 (3)0.24350 (11)0.7801 (2)0.0331 (5)
C170.4617 (3)0.26269 (11)0.8967 (2)0.0354 (5)
H17A0.55330.26860.85500.043*
O180.4950 (2)0.20790 (8)0.99464 (19)0.0441 (4)
H180.58710.21401.05630.066*
O190.2643 (2)0.28460 (9)0.68378 (18)0.0430 (4)
C200.4369 (4)0.32612 (13)0.9706 (3)0.0513 (7)
H20A0.53330.33641.04280.077*
H20B0.34830.32041.01290.077*
H20C0.41320.36210.90340.077*
N210.3937 (3)0.18194 (11)0.4271 (2)0.0469 (5)
O220.5171 (3)0.18147 (13)0.5268 (3)0.0796 (8)
O230.3678 (3)0.23108 (11)0.3466 (3)0.0720 (7)
O240.2997 (3)0.13421 (11)0.4069 (3)0.0681 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03555 (16)0.02848 (15)0.03075 (16)0.00216 (10)0.00566 (11)0.00270 (10)
O10.0472 (10)0.0450 (10)0.0461 (10)0.0064 (8)0.0042 (8)0.0018 (8)
N10.0383 (10)0.0311 (9)0.0331 (10)0.0010 (8)0.0002 (8)0.0003 (7)
C20.0434 (13)0.0411 (13)0.0369 (12)0.0040 (10)0.0042 (10)0.0010 (10)
C30.0459 (14)0.0475 (14)0.0404 (13)0.0090 (11)0.0034 (11)0.0056 (11)
C40.0473 (14)0.0378 (12)0.0466 (14)0.0091 (10)0.0088 (11)0.0122 (11)
C50.0444 (13)0.0296 (11)0.0420 (13)0.0005 (9)0.0101 (10)0.0052 (9)
C60.0528 (15)0.0327 (12)0.0518 (15)0.0011 (11)0.0137 (12)0.0006 (11)
C70.0574 (15)0.0283 (11)0.0522 (15)0.0076 (10)0.0123 (12)0.0083 (10)
C80.0412 (12)0.0338 (11)0.0412 (12)0.0077 (9)0.0084 (10)0.0042 (10)
C90.0474 (14)0.0438 (13)0.0427 (13)0.0073 (11)0.0020 (11)0.0120 (11)
C100.0439 (14)0.0523 (15)0.0390 (13)0.0011 (11)0.0062 (10)0.0070 (11)
C110.0411 (13)0.0406 (12)0.0391 (12)0.0023 (10)0.0045 (10)0.0033 (10)
N120.0347 (10)0.0323 (9)0.0328 (9)0.0007 (8)0.0007 (8)0.0021 (7)
C130.0349 (11)0.0290 (10)0.0346 (11)0.0030 (9)0.0049 (9)0.0002 (9)
C140.0362 (11)0.0287 (10)0.0344 (11)0.0009 (8)0.0063 (9)0.0026 (8)
O150.0421 (9)0.0368 (9)0.0338 (8)0.0096 (7)0.0108 (7)0.0046 (7)
C160.0286 (10)0.0343 (11)0.0293 (10)0.0008 (8)0.0052 (8)0.0005 (8)
C170.0295 (10)0.0346 (11)0.0343 (11)0.0033 (8)0.0061 (8)0.0062 (9)
O180.0348 (8)0.0367 (8)0.0451 (9)0.0040 (7)0.0180 (7)0.0106 (7)
O190.0407 (9)0.0386 (9)0.0376 (9)0.0048 (7)0.0120 (7)0.0098 (7)
C200.0577 (16)0.0385 (13)0.0449 (14)0.0007 (12)0.0098 (12)0.0045 (11)
N210.0469 (12)0.0429 (12)0.0456 (12)0.0025 (10)0.0025 (10)0.0019 (9)
O220.0641 (14)0.0782 (17)0.0734 (16)0.0074 (12)0.0240 (12)0.0075 (13)
O230.0983 (18)0.0507 (12)0.0569 (13)0.0050 (12)0.0017 (12)0.0095 (10)
O240.0598 (13)0.0535 (13)0.0791 (16)0.0131 (10)0.0036 (11)0.0039 (11)
Geometric parameters (Å, º) top
Cu1—O151.9256 (16)C8—C91.407 (4)
Cu1—O181.9516 (17)C9—C101.369 (4)
Cu1—N11.9970 (19)C9—H9A0.9300
Cu1—N122.0096 (19)C10—C111.395 (4)
Cu1—O12.2283 (19)C10—H10A0.9300
Cu1—Cu1i6.2127 (8)C11—N121.331 (3)
O1—H1A0.7711C11—H11A0.9300
O1—H1B0.8785N12—C131.360 (3)
N1—C21.328 (3)C13—C141.429 (3)
N1—C141.357 (3)O15—C161.267 (3)
C2—C31.402 (4)C16—O191.238 (3)
C2—H2A0.9300C16—C171.528 (3)
C3—C41.367 (4)C17—O181.435 (3)
C3—H3A0.9300C17—C201.502 (4)
C4—C51.409 (4)C17—H17A0.9800
C4—H4A0.9300O18—H180.8690
C5—C141.404 (3)C20—H20A0.9600
C5—C61.437 (4)C20—H20B0.9600
C6—C71.360 (4)C20—H20C0.9600
C6—H6A0.9300N21—O241.231 (3)
C7—C81.435 (4)N21—O221.239 (3)
C7—H7A0.9300N21—O231.243 (3)
C8—C131.403 (3)
O15—Cu1—O1882.49 (7)C9—C8—C7124.2 (2)
O15—Cu1—N193.24 (7)C10—C9—C8118.7 (2)
O18—Cu1—N1164.40 (9)C10—C9—H9A120.6
O15—Cu1—N12169.12 (8)C8—C9—H9A120.6
O18—Cu1—N1299.07 (7)C9—C10—C11120.6 (2)
N1—Cu1—N1282.40 (8)C9—C10—H10A119.7
O15—Cu1—O195.03 (8)C11—C10—H10A119.7
O18—Cu1—O194.78 (8)N12—C11—C10122.0 (2)
N1—Cu1—O1100.55 (8)N12—C11—H11A119.0
N12—Cu1—O195.57 (8)C10—C11—H11A119.0
O15—Cu1—Cu1i127.59 (6)C11—N12—C13118.0 (2)
O18—Cu1—Cu1i108.31 (5)C11—N12—Cu1130.06 (17)
N1—Cu1—Cu1i62.70 (6)C13—N12—Cu1111.93 (14)
N12—Cu1—Cu1i41.66 (6)N12—C13—C8123.4 (2)
O1—Cu1—Cu1i132.90 (5)N12—C13—C14116.73 (19)
Cu1—O1—H1A110.6C8—C13—C14119.9 (2)
Cu1—O1—H1B105.6N1—C14—C5123.3 (2)
H1A—O1—H1B114.6N1—C14—C13116.18 (19)
C2—N1—C14118.2 (2)C5—C14—C13120.6 (2)
C2—N1—Cu1129.05 (17)C16—O15—Cu1116.12 (14)
C14—N1—Cu1112.74 (15)O19—C16—O15125.1 (2)
N1—C2—C3122.2 (2)O19—C16—C17116.8 (2)
N1—C2—H2A118.9O15—C16—C17118.15 (19)
C3—C2—H2A118.9O18—C17—C20110.5 (2)
C4—C3—C2119.9 (2)O18—C17—C16106.91 (17)
C4—C3—H3A120.0C20—C17—C16112.1 (2)
C2—C3—H3A120.0O18—C17—H17A109.1
C3—C4—C5119.3 (2)C20—C17—H17A109.1
C3—C4—H4A120.3C16—C17—H17A109.1
C5—C4—H4A120.3C17—O18—Cu1115.01 (12)
C14—C5—C4117.1 (2)C17—O18—H18110.2
C14—C5—C6118.8 (2)Cu1—O18—H18134.8
C4—C5—C6124.1 (2)C17—C20—H20A109.5
C7—C6—C5120.3 (2)C17—C20—H20B109.5
C7—C6—H6A119.8H20A—C20—H20B109.5
C5—C6—H6A119.8C17—C20—H20C109.5
C6—C7—C8121.8 (2)H20A—C20—H20C109.5
C6—C7—H7A119.1H20B—C20—H20C109.5
C8—C7—H7A119.1O24—N21—O22120.7 (3)
C13—C8—C9117.3 (2)O24—N21—O23120.5 (2)
C13—C8—C7118.6 (2)O22—N21—O23118.8 (3)
O15—Cu1—N1—C210.4 (2)Cu1—N12—C13—C8178.60 (19)
O18—Cu1—N1—C283.8 (4)C11—N12—C13—C14179.1 (2)
N12—Cu1—N1—C2179.7 (2)Cu1—N12—C13—C141.3 (3)
O1—Cu1—N1—C285.4 (2)C9—C8—C13—N120.4 (4)
Cu1i—Cu1—N1—C2141.5 (2)C7—C8—C13—N12180.0 (2)
O15—Cu1—N1—C14171.03 (17)C9—C8—C13—C14179.5 (2)
O18—Cu1—N1—C1497.6 (3)C7—C8—C13—C140.1 (4)
N12—Cu1—N1—C141.04 (17)C2—N1—C14—C50.0 (4)
O1—Cu1—N1—C1493.24 (17)Cu1—N1—C14—C5178.78 (19)
Cu1i—Cu1—N1—C1439.85 (14)C2—N1—C14—C13179.4 (2)
C14—N1—C2—C30.5 (4)Cu1—N1—C14—C130.6 (3)
Cu1—N1—C2—C3179.0 (2)C4—C5—C14—N10.1 (4)
N1—C2—C3—C40.9 (4)C6—C5—C14—N1179.2 (2)
C2—C3—C4—C50.7 (4)C4—C5—C14—C13179.5 (2)
C3—C4—C5—C140.2 (4)C6—C5—C14—C130.2 (4)
C3—C4—C5—C6179.5 (3)N12—C13—C14—N10.5 (3)
C14—C5—C6—C70.5 (4)C8—C13—C14—N1179.4 (2)
C4—C5—C6—C7179.8 (3)N12—C13—C14—C5179.9 (2)
C5—C6—C7—C80.6 (4)C8—C13—C14—C50.0 (4)
C6—C7—C8—C130.4 (4)O18—Cu1—O15—C1610.20 (18)
C6—C7—C8—C9179.1 (3)N1—Cu1—O15—C16175.13 (18)
C13—C8—C9—C100.1 (4)N12—Cu1—O15—C16109.2 (4)
C7—C8—C9—C10179.5 (3)O1—Cu1—O15—C1683.98 (18)
C8—C9—C10—C110.2 (4)Cu1i—Cu1—O15—C16117.56 (17)
C9—C10—C11—N120.2 (5)Cu1—O15—C16—O19172.1 (2)
C10—C11—N12—C130.6 (4)Cu1—O15—C16—C178.2 (3)
C10—C11—N12—Cu1178.0 (2)O19—C16—C17—O18179.5 (2)
O15—Cu1—N12—C11114.3 (4)O15—C16—C17—O180.2 (3)
O18—Cu1—N12—C1116.9 (2)O19—C16—C17—C2059.3 (3)
N1—Cu1—N12—C11178.8 (2)O15—C16—C17—C20121.1 (3)
O1—Cu1—N12—C1178.8 (2)C20—C17—O18—Cu1113.9 (2)
Cu1i—Cu1—N12—C11124.3 (3)C16—C17—O18—Cu18.3 (2)
O15—Cu1—N12—C1368.2 (4)O15—Cu1—O18—C1710.21 (17)
O18—Cu1—N12—C13165.58 (16)N1—Cu1—O18—C1785.1 (3)
N1—Cu1—N12—C131.27 (16)N12—Cu1—O18—C17179.33 (17)
O1—Cu1—N12—C1398.66 (16)O1—Cu1—O18—C1784.25 (17)
Cu1i—Cu1—N12—C1358.17 (14)Cu1i—Cu1—O18—C17137.40 (16)
C11—N12—C13—C80.8 (4)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18···O19ii0.871.702.562 (2)172
O1—H1B···O23iii0.881.942.819 (3)174
O1—H1A···O22iv0.772.172.871 (3)151
O1—H1B···N21iii0.882.613.434 (3)156
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C3H5O3)(C12H8N2)(H2O)]NO3
Mr412.84
Crystal system, space groupMonoclinic, P21/n
Temperature (K)300
a, b, c (Å)8.5646 (13), 19.985 (3), 9.7854 (13)
β (°) 104.960 (11)
V3)1618.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.62 × 0.26 × 0.22
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionGaussian
(XSCANS; Siemens, 1996)
Tmin, Tmax0.599, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
4687, 3706, 3156
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.04
No. of reflections3706
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.54

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL-Plus (Sheldrick, 1998), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O151.9256 (16)C8—C91.407 (4)
Cu1—O181.9516 (17)C9—C101.369 (4)
Cu1—N11.9970 (19)C10—C111.395 (4)
Cu1—N122.0096 (19)C11—N121.331 (3)
Cu1—O12.2283 (19)N12—C131.360 (3)
N1—C21.328 (3)C13—C141.429 (3)
N1—C141.357 (3)O15—C161.267 (3)
C2—C31.402 (4)C16—O191.238 (3)
C3—C41.367 (4)C16—C171.528 (3)
C4—C51.409 (4)C17—O181.435 (3)
C5—C141.404 (3)C17—C201.502 (4)
C5—C61.437 (4)N21—O241.231 (3)
C6—C71.360 (4)N21—O221.239 (3)
C7—C81.435 (4)N21—O231.243 (3)
C8—C131.403 (3)
O15—Cu1—O1882.49 (7)C10—C9—C8118.7 (2)
O15—Cu1—N193.24 (7)C9—C10—C11120.6 (2)
O18—Cu1—N1164.40 (9)N12—C11—C10122.0 (2)
O15—Cu1—N12169.12 (8)C11—N12—C13118.0 (2)
O18—Cu1—N1299.07 (7)C11—N12—Cu1130.06 (17)
N1—Cu1—N1282.40 (8)C13—N12—Cu1111.93 (14)
O15—Cu1—O195.03 (8)N12—C13—C8123.4 (2)
O18—Cu1—O194.78 (8)N12—C13—C14116.73 (19)
N1—Cu1—O1100.55 (8)C8—C13—C14119.9 (2)
N12—Cu1—O195.57 (8)N1—C14—C5123.3 (2)
C2—N1—C14118.2 (2)N1—C14—C13116.18 (19)
C2—N1—Cu1129.05 (17)C5—C14—C13120.6 (2)
C14—N1—Cu1112.74 (15)C16—O15—Cu1116.12 (14)
N1—C2—C3122.2 (2)O19—C16—O15125.1 (2)
C4—C3—C2119.9 (2)O19—C16—C17116.8 (2)
C3—C4—C5119.3 (2)O15—C16—C17118.15 (19)
C14—C5—C4117.1 (2)O18—C17—C20110.5 (2)
C14—C5—C6118.8 (2)O18—C17—C16106.91 (17)
C4—C5—C6124.1 (2)C20—C17—C16112.1 (2)
C7—C6—C5120.3 (2)C17—O18—Cu1115.01 (12)
C6—C7—C8121.8 (2)O24—N21—O22120.7 (3)
C13—C8—C9117.3 (2)O24—N21—O23120.5 (2)
C13—C8—C7118.6 (2)O22—N21—O23118.8 (3)
C9—C8—C7124.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18···O19i0.871.702.562 (2)172
O1—H1B···O23ii0.881.942.819 (3)174
O1—H1A···O22iii0.772.172.871 (3)151
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds