Download citation
Download citation
link to html
In the title compound, [Ni(C17H17N3OS)(NH3)], the Ni atom is in a distorted square-planar geometry, with the 2-hydroxy-1-naphth­aldehyde 4-piperidyl­thio­semicarbazonate ligand coord­inated in a terdentate manner through the S, N and O atoms. A mol­ecule of ammonia completes the coordination.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020184/lh6013sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020184/lh6013Isup2.hkl
Contains datablock I

CCDC reference: 202282

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.042
  • wR factor = 0.110
  • Data-to-parameter ratio = 13.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_353 Alert C Long N-H Bond (0.87A) N(4) - H(4C) = 1.01 Ang. PLAT_420 Alert C D-H Without Acceptor N(4) - H(4A) ? PLAT_420 Alert C D-H Without Acceptor N(4) - H(4C) ?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

The Ni atom in the title compound, (I), presents a coordination number of four. The 2-hydroxy-1-naphthaldehyde 4-piperidylthiosemicarbazonate ligand has a charge of 2 and acts as a terdentate ligand, coordinating to the NiII ion via the thiolate S, the azomethine N and the naphthoxy O atom. The ammonia molecule coordinates in the fourth position. The coordination geometry is distorted square planar, as indicated by the distances and angles around the metal ion. The coordinated thiosemicarbazone ligand is almost planar and the angle between the Ni1—S1—N1—N2—C12 and Ni1—O1—N1—C1—C2—C11 chelate rings is 3.9 (1)°. The angle between the Ni1—S1—N1—N2—C12 chelate ring and the mean plane of the naphthalene rings is 9.4 (1)°. The piperidyl ring is in a chair conformation. A self-complimentary intermolecular N—H ··· O hydrogen bond (see Table 2) involving the ammonia H4B atom and the O atom of the coordinated thiosemicarbazone ligand is present in the crystal structure of (I).

Experimental top

4-Piperidylthiosemicarbazide was prepared following a reported procedure (Scovill, 1991). The ligand 2-hydroxy-1-naphthaldehyde 4-piperidylthiosemicarbazone (L) was obtained from a 1:1 molar ratio of 2-hydroxy-1-naphthaldehyde (Aldrich) and 4-piperidylthiosemicarbazide in boiling ethanol containing 2–3 drops of concentrated H2SO4. Compound (I) was prepared from L and nickel(II) nitrate hexahydrate (Aldrich) in a 1:1 molar ratio in a boiling methanol–ammonia solution. Crystals of (I) were obtained by slow evaporation at room temperature of the reaction mixture.

Refinement top

The ammonia H atoms were found in a difference Fourier map and were refined isotropically. The refined N—H distances range from 0.84 (6) to 1.01 (5) Å. H atoms attached to C atoms were included in calculated positions (C—H 0.93–0.97 Å), and refined using a riding model with fixed displacement parameters (Uiso = 1.2Ueq of the atom to which they are bonded).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL/PC (Sheldrick 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999) and Mercury 1.1 (Bruno et al., 2002); software used to prepare material for publication: SHELXL97 and PLATON.

Figures top
[Figure 1] Fig. 1. A view of (I). Displacement ellipsoid drawn at a 30% probability level.
[Figure 2] Fig. 2. The crystal structure of (I).
Ammine[2-hydroxy-1-naphthaldehyde 4-piperidylthiosemicarbazonato]nickel(II) top
Crystal data top
[Ni(C17H17N3OS)(NH3)]Z = 2
Mr = 387.14F(000) = 404
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.424 (1) ÅCell parameters from 39 reflections
b = 9.482 (1) Åθ = 2.9–12.5°
c = 9.668 (1) ŵ = 1.27 mm1
α = 97.08°T = 291 K
β = 93.70°Laminar, red
γ = 93.36°0.46 × 0.16 × 0.08 mm
V = 853.61 (16) Å3
Data collection top
Siemens P4/PC
diffractometer
2435 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω scansh = 011
Absorption correction: analytical
based on measured indexed crystal faces (SHELXTL; Sheldrick, 1997)
k = 1111
Tmin = 0.770, Tmax = 0.915l = 1111
3219 measured reflections3 standard reflections every 97 reflections
3018 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.0722P]
where P = (Fo2 + 2Fc2)/3
3018 reflections(Δ/σ)max = 0.013
226 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ni(C17H17N3OS)(NH3)]γ = 93.36°
Mr = 387.14V = 853.61 (16) Å3
Triclinic, P1Z = 2
a = 9.424 (1) ÅMo Kα radiation
b = 9.482 (1) ŵ = 1.27 mm1
c = 9.668 (1) ÅT = 291 K
α = 97.08°0.46 × 0.16 × 0.08 mm
β = 93.70°
Data collection top
Siemens P4/PC
diffractometer
2435 reflections with I > 2σ(I)
Absorption correction: analytical
based on measured indexed crystal faces (SHELXTL; Sheldrick, 1997)
Rint = 0.046
Tmin = 0.770, Tmax = 0.9153 standard reflections every 97 reflections
3219 measured reflections intensity decay: <2%
3018 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.43 e Å3
3018 reflectionsΔρmin = 0.49 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.20942 (5)0.35622 (5)0.10346 (5)0.03897 (15)
S10.42569 (10)0.42316 (10)0.17642 (10)0.0462 (2)
O10.0236 (3)0.3023 (3)0.0324 (3)0.0484 (6)
N10.2125 (3)0.2306 (3)0.2343 (3)0.0368 (6)
N20.3330 (3)0.2189 (3)0.3232 (3)0.0428 (7)
N30.5641 (3)0.3065 (3)0.3839 (3)0.0457 (7)
N40.2088 (4)0.4810 (4)0.0394 (4)0.0561 (9)
H4A0.280 (6)0.531 (6)0.051 (6)0.067*
H4B0.134 (6)0.539 (5)0.030 (5)0.067*
H4C0.167 (5)0.423 (5)0.129 (6)0.067*
C10.0254 (3)0.1153 (4)0.1711 (4)0.0387 (7)
C20.0573 (4)0.1942 (4)0.0610 (4)0.0453 (8)
C30.1858 (4)0.1572 (5)0.0270 (4)0.0569 (10)
H30.20590.20760.10170.068*
C40.2778 (4)0.0503 (5)0.0027 (5)0.0600 (11)
H40.35950.02760.06240.072*
C50.3524 (4)0.1377 (5)0.1391 (6)0.0702 (14)
H50.43420.16020.07950.084*
C60.3315 (5)0.2104 (5)0.2496 (7)0.0718 (14)
H60.39990.27930.26740.086*
C70.2063 (5)0.1812 (5)0.3371 (6)0.0658 (12)
H70.19070.23170.41260.079*
C80.1063 (4)0.0778 (4)0.3115 (5)0.0519 (9)
H80.02290.06100.36960.062*
C90.1263 (4)0.0035 (4)0.1997 (4)0.0451 (8)
C100.2537 (4)0.0288 (4)0.1113 (5)0.0542 (10)
C110.1077 (3)0.1396 (3)0.2515 (4)0.0393 (7)
H110.12140.08490.32410.047*
C120.4399 (4)0.3055 (4)0.3029 (3)0.0391 (7)
C130.6946 (4)0.3812 (5)0.3492 (5)0.0604 (11)
H13A0.67050.46630.30900.072*
H13B0.74020.32040.27970.072*
C140.7960 (5)0.4219 (5)0.4743 (6)0.0711 (13)
H14A0.75520.49250.53860.085*
H14B0.88370.46450.44570.085*
C150.8291 (4)0.2952 (6)0.5482 (5)0.0677 (12)
H15A0.88840.32680.63340.081*
H15B0.88150.23000.48870.081*
C160.6928 (5)0.2193 (5)0.5831 (5)0.0623 (11)
H16A0.71560.13290.62160.075*
H16B0.64870.27980.65410.075*
C170.5886 (4)0.1815 (5)0.4577 (5)0.0560 (10)
H17A0.62490.10710.39420.067*
H17B0.49880.14490.48740.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0395 (2)0.0423 (2)0.0379 (2)0.00834 (17)0.00095 (16)0.01443 (17)
S10.0437 (5)0.0475 (5)0.0498 (5)0.0040 (4)0.0007 (4)0.0208 (4)
O10.0413 (13)0.0589 (15)0.0475 (13)0.0094 (12)0.0071 (11)0.0193 (12)
N10.0345 (13)0.0387 (14)0.0378 (14)0.0022 (11)0.0042 (11)0.0101 (11)
N20.0331 (14)0.0513 (16)0.0447 (15)0.0065 (12)0.0086 (12)0.0191 (13)
N30.0347 (14)0.0514 (17)0.0514 (17)0.0081 (12)0.0042 (12)0.0175 (14)
N40.0528 (19)0.068 (2)0.056 (2)0.0158 (17)0.0102 (16)0.0331 (18)
C10.0314 (15)0.0415 (17)0.0419 (17)0.0059 (13)0.0041 (13)0.0019 (14)
C20.0376 (17)0.053 (2)0.0448 (18)0.0146 (15)0.0035 (14)0.0017 (15)
C30.048 (2)0.067 (3)0.054 (2)0.0179 (19)0.0150 (17)0.0005 (18)
C40.0391 (19)0.066 (3)0.067 (3)0.0141 (18)0.0181 (18)0.014 (2)
C50.0320 (18)0.055 (2)0.113 (4)0.0024 (17)0.005 (2)0.023 (3)
C60.040 (2)0.044 (2)0.126 (4)0.0103 (17)0.016 (2)0.009 (3)
C70.054 (2)0.050 (2)0.091 (3)0.0106 (19)0.010 (2)0.004 (2)
C80.0410 (19)0.0458 (19)0.067 (2)0.0081 (15)0.0010 (17)0.0070 (17)
C90.0336 (16)0.0427 (18)0.056 (2)0.0048 (14)0.0010 (15)0.0043 (15)
C100.0327 (17)0.049 (2)0.075 (3)0.0056 (15)0.0036 (17)0.0140 (19)
C110.0351 (16)0.0392 (17)0.0437 (17)0.0017 (13)0.0049 (14)0.0119 (14)
C120.0381 (17)0.0406 (17)0.0392 (16)0.0000 (13)0.0011 (13)0.0111 (13)
C130.041 (2)0.073 (3)0.070 (3)0.0117 (19)0.0006 (18)0.029 (2)
C140.043 (2)0.074 (3)0.093 (3)0.014 (2)0.014 (2)0.018 (3)
C150.041 (2)0.085 (3)0.076 (3)0.002 (2)0.014 (2)0.017 (2)
C160.050 (2)0.074 (3)0.064 (3)0.001 (2)0.0129 (19)0.024 (2)
C170.048 (2)0.058 (2)0.064 (2)0.0053 (17)0.0090 (18)0.0250 (19)
Geometric parameters (Å, º) top
Ni1—N11.841 (3)C5—C101.411 (7)
Ni1—O11.858 (3)C5—H50.9300
Ni1—N41.926 (3)C6—C71.401 (7)
Ni1—S12.1465 (11)C6—H60.9300
S1—C121.758 (3)C7—C81.375 (6)
O1—C21.310 (5)C7—H70.9300
N1—C111.305 (4)C8—C91.413 (6)
N1—N21.397 (4)C8—H80.9300
N2—C121.303 (5)C9—C101.423 (5)
N3—C121.365 (4)C11—H110.9300
N3—C131.461 (5)C13—C141.488 (6)
N3—C171.479 (5)C13—H13A0.9700
N4—H4A0.84 (6)C13—H13B0.9700
N4—H4B0.91 (5)C14—C151.509 (7)
N4—H4C1.01 (5)C14—H14A0.9700
C1—C21.402 (5)C14—H14B0.9700
C1—C111.424 (5)C15—C161.514 (6)
C1—C91.446 (5)C15—H15A0.9700
C2—C31.434 (5)C15—H15B0.9700
C3—C41.348 (7)C16—C171.504 (6)
C3—H30.9300C16—H16A0.9700
C4—C101.421 (7)C16—H16B0.9700
C4—H40.9300C17—H17A0.9700
C5—C61.351 (8)C17—H17B0.9700
N1—Ni1—O195.21 (12)C9—C8—H8119.0
N1—Ni1—N4177.42 (16)C8—C9—C10116.9 (4)
O1—Ni1—N484.65 (15)C8—C9—C1123.8 (3)
N1—Ni1—S187.48 (9)C10—C9—C1119.3 (4)
O1—Ni1—S1177.17 (9)C5—C10—C4121.9 (4)
N4—Ni1—S192.62 (13)C5—C10—C9119.4 (4)
C12—S1—Ni195.93 (12)C4—C10—C9118.8 (4)
C2—O1—Ni1127.1 (2)N1—C11—C1127.0 (3)
C11—N1—N2112.4 (3)N1—C11—H11116.5
C11—N1—Ni1125.1 (2)C1—C11—H11116.5
N2—N1—Ni1122.5 (2)N2—C12—N3119.0 (3)
C12—N2—N1112.8 (3)N2—C12—S1121.3 (3)
C12—N3—C13121.1 (3)N3—C12—S1119.7 (3)
C12—N3—C17118.0 (3)N3—C13—C14111.9 (4)
C13—N3—C17114.1 (3)N3—C13—H13A109.2
Ni1—N4—H4A121 (4)C14—C13—H13A109.2
Ni1—N4—H4B109 (3)N3—C13—H13B109.2
H4A—N4—H4B108 (5)C14—C13—H13B109.2
Ni1—N4—H4C107 (3)H13A—C13—H13B107.9
H4A—N4—H4C112 (5)C13—C14—C15111.8 (4)
H4B—N4—H4C96 (4)C13—C14—H14A109.2
C2—C1—C11120.8 (3)C15—C14—H14A109.2
C2—C1—C9119.6 (3)C13—C14—H14B109.2
C11—C1—C9119.5 (3)C15—C14—H14B109.2
O1—C2—C1123.9 (3)H14A—C14—H14B107.9
O1—C2—C3116.7 (3)C14—C15—C16110.3 (4)
C1—C2—C3119.4 (4)C14—C15—H15A109.6
C4—C3—C2120.9 (4)C16—C15—H15A109.6
C4—C3—H3119.6C14—C15—H15B109.6
C2—C3—H3119.6C16—C15—H15B109.6
C3—C4—C10122.0 (3)H15A—C15—H15B108.1
C3—C4—H4119.0C17—C16—C15112.5 (4)
C10—C4—H4119.0C17—C16—H16A109.1
C6—C5—C10122.0 (4)C15—C16—H16A109.1
C6—C5—H5119.0C17—C16—H16B109.1
C10—C5—H5119.0C15—C16—H16B109.1
C5—C6—C7119.6 (4)H16A—C16—H16B107.8
C5—C6—H6120.2N3—C17—C16111.5 (3)
C7—C6—H6120.2N3—C17—H17A109.3
C8—C7—C6120.1 (5)C16—C17—H17A109.3
C8—C7—H7120.0N3—C17—H17B109.3
C6—C7—H7120.0C16—C17—H17B109.3
C7—C8—C9122.0 (4)H17A—C17—H17B108.0
C7—C8—H8119.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O1i0.91 (5)2.19 (6)3.088 (4)170 (5)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C17H17N3OS)(NH3)]
Mr387.14
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.424 (1), 9.482 (1), 9.668 (1)
α, β, γ (°)97.08, 93.70, 93.36
V3)853.61 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.46 × 0.16 × 0.08
Data collection
DiffractometerSiemens P4/PC
diffractometer
Absorption correctionAnalytical
based on measured indexed crystal faces (SHELXTL; Sheldrick, 1997)
Tmin, Tmax0.770, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
3219, 3018, 2435
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.00
No. of reflections3018
No. of parameters226
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.49

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL/PC (Sheldrick 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999) and Mercury 1.1 (Bruno et al., 2002), SHELXL97 and PLATON.

Selected geometric parameters (Å, º) top
Ni1—N11.841 (3)O1—C21.310 (5)
Ni1—O11.858 (3)N1—C111.305 (4)
Ni1—N41.926 (3)N1—N21.397 (4)
Ni1—S12.1465 (11)N2—C121.303 (5)
S1—C121.758 (3)N3—C121.365 (4)
N1—Ni1—O195.21 (12)N1—Ni1—S187.48 (9)
N1—Ni1—N4177.42 (16)O1—Ni1—S1177.17 (9)
O1—Ni1—N484.65 (15)N4—Ni1—S192.62 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O1i0.91 (5)2.19 (6)3.088 (4)170 (5)
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds