Download citation
Download citation
link to html
In the title phospho­nium metalate, (C26H22OP)2[Cd2Br6], the two methyl­ene H atoms of the cation are involved in C—H...Br and C—H...O interactions. These interactions link the cations and the centrosymmetric anions to form rings of graph-set R22(9) and R22(12), and form chains along the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802019955/ob6186sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802019955/ob6186Isup2.hkl
Contains datablock I

CCDC reference: 202276

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.026
  • wR factor = 0.058
  • Data-to-parameter ratio = 18.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_743 Alert C Torsion Calc 0.03(9), Rep 0.00 .... Missing su BR2 -CD1 -BR2 -CD1 5.775 1.555 1.555 5.775
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

HgII salts exhibit strong reactivity with benzoylmethylenetriphenylphosphorane(BPPY) to form organometallics (Kalyanasundari et al., 1995, 1999). In order to determine the mode of reactivity of the ylide with a cadmium salt, the above reaction was carried out. The 1H NMR data in DMSO-d6 indicate the formation of a phosphonium derivative and also reveal that it was different from (C6H5)3P+·CH2COC6H5Br. A single-crystal X-ray diffraction experiment was then performed to obtain the structural details of the new phosphonium derivative, (I).

The results show that centrosymmetric dimers are formed from CdBr3 and Ph3PCH2COPh units, yielding Cd2Br62− ions in which Cd2+ is tetrahedrally coordinated to two terminal and two bridging Br ions (Fig. 1). The Cd2Br62− ion is interposed between the two phosphonium cations, and the two bridging Br ions are unsymmetrically bonded to Cd. The H1—C1—H2 angle [107.97 (1)°] indicates that the angle around the ylidic carbon of the parent ylide [115.3 (4)° and 123.0 (4)° corresponding to two non-equivalent molecules in the asymmetric unit; Kalyanasundari et al., 1994] has been reduced because of protonation at the ylidic carbon. The torsion angle P1—C1—-C2–O1 [19.1 (3)°] is slightly larger than theose found in the parent ylide [0.9 (8) and −2.2 (9)°] and confirms the near cis orientation of the P and O centres. The P1···O1 distance [2.918 (2) Å] is comparable to that observed in the parent ylide and is significantly shorter than the sum of the van der Waals radii of P and O (3.3 Å; Dunitz, 1979).

The dimeric structure is stabilized mainly by two types of secondary interactions, viz. a C1—H1···O1 interaction and a C1—H2···Br1 interaction (Table 2). The former, which links the cations along the b axis (Fig. 2), can be considered to be strong (Jeffrey, 1997), with the H1···O1 distance being 2.48 (3) Å and the C1—H1···O1 angle 167 (2)°. The latter, an interaction between H2 and Br1 within the asymmetric unit at a distance of3.584 (2) Å, is comparable to the corresponding distance in Cl3CH+·Br (3.56 Å in an average of four structures; Steiner, 1998). In conjunction, both interactions link cations and anions along the c axis, forming then layers perpendicular to the a axis, as shown in Fig. 2. These layers are linked along the a axis through other weaker C—H···Br interactions, summarized in Table 2. The hydrogen bonding involving the –P—CH– group in the ylide and in phosphonium salts (Yufit et al., 2000; Baby Mariyatra et al., 2002) may arise due to the acidity of the CH group.

The phosphonium metalate formation contrasts to the C-coordination of the BPPY ylide with HgII (Kalyanasundari et al., 1995) and the O-coordination with UVI (Kalyanasundari, 1998). It is, however, comparable to the formation of a tetracholorocobaltate salt formed by the reaction of the same ylide with CoCl2·6H2O (Albanese et al., 1989). The formation of the phosphonium and Cd2Br62− ions can be accounted by the initial hydrolysis of CdBr2, with subsequent interaction of a H atom and Br with the ylidic carbon and CdBr2, respectively.

Experimental top

The title compound was prepared by the reaction of CdBr2 and benzoylmethylenetriphenylphosphorane (BPPY) in methanol in a 1:1 ratio. Slow evaporation of the solvent gave twinned crystals. 1H NMR (DMSO-d6, p.p.m.): δ 6.12 [d, 2H, 2J(P—H) = 13.2 Hz], 8.08–7.36 (m, 20 H). Diffraction quality crystals of (I) were obtained by recrystallizing these crystals in ethanol. [Please check the reformatted NMR data]

Refinement top

All H atoms were located from difference Fourier maps and their positions and isotropic displacement parameters were refined. The C—H bond distances range from 0.88 (3) to 0.99 (3) Å.

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 1998); software used to prepare material for publication: SHELXTL-NT.

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (30% probability) of (I), showing the centrosymmetric dimers formed by the cations through hydrogen bonding with the anion. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 2] Fig. 2. Packing plot showing the two main C—H interactions forming layers of cations and anions perpendicular to the a axis. H atoms, except for H1 and H2, and the C atoms of the phenyl rings of the triphenylphosphonium fragment have been omitted for clarity.
Bis(benzoylmethyltriphenylphosphonium) hexabromocadmate(II) top
Crystal data top
(C26H22OP)2[Cd2Br6]Dx = 1.874 Mg m3
Mr = 1467.08Melting point: 480 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
a = 25.7075 (15) ÅCell parameters from 736 reflections
b = 10.7351 (9) Åθ = 10.3–20.5°
c = 18.8469 (14) ŵ = 5.53 mm1
V = 5201.2 (7) Å3T = 120 K
Z = 4Irregular prism, colourless
F(000) = 28320.42 × 0.28 × 0.15 mm
Data collection top
Bruker SMART 6K CCD
diffractometer
7011 independent reflections
Radiation source: fine-focus sealed tube5580 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 29.2°, θmin = 1.6°
Absorption correction: integration
(XPREP in SHELXTL; Bruker, 1998)
h = 3035
Tmin = 0.221, Tmax = 0.531k = 1414
30677 measured reflectionsl = 2522
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.058All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0241P)2 + 2.9606P]
where P = (Fo2 + 2Fc2)/3
7011 reflections(Δ/σ)max = 0.005
377 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
(C26H22OP)2[Cd2Br6]V = 5201.2 (7) Å3
Mr = 1467.08Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 25.7075 (15) ŵ = 5.53 mm1
b = 10.7351 (9) ÅT = 120 K
c = 18.8469 (14) Å0.42 × 0.28 × 0.15 mm
Data collection top
Bruker SMART 6K CCD
diffractometer
7011 independent reflections
Absorption correction: integration
(XPREP in SHELXTL; Bruker, 1998)
5580 reflections with I > 2σ(I)
Tmin = 0.221, Tmax = 0.531Rint = 0.033
30677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.058All H-atom parameters refined
S = 1.02Δρmax = 0.59 e Å3
7011 reflectionsΔρmin = 0.35 e Å3
377 parameters
Special details top

Experimental. Three sets of ω scans (each scan 0.3° in ω, exposure time 5 s), each set at different ϕ and/or 2θ angles, nominally covered a full hemisphere of reciprocal space. Crystal to detector distance 4.85 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.81856 (2)0.85336 (5)0.21150 (3)0.01542 (12)
O10.74102 (6)1.02180 (15)0.15165 (10)0.0234 (4)
C10.78389 (9)0.8309 (2)0.12956 (13)0.0169 (4)
H10.7735 (11)0.747 (3)0.1290 (15)0.029 (7)*
H20.8072 (11)0.842 (3)0.0940 (16)0.029 (8)*
C20.74049 (8)0.9251 (2)0.11824 (13)0.0174 (5)
C30.69897 (9)0.8954 (2)0.06627 (13)0.0184 (5)
C40.65562 (10)0.9732 (2)0.06364 (15)0.0248 (5)
H40.6545 (10)1.037 (3)0.0929 (15)0.023 (7)*
C50.61546 (10)0.9497 (3)0.01745 (16)0.0308 (6)
H50.5862 (11)0.997 (3)0.0165 (16)0.036 (8)*
C60.61789 (11)0.8468 (3)0.02700 (16)0.0327 (6)
H60.5899 (11)0.829 (3)0.0586 (17)0.032 (8)*
C70.66080 (11)0.7693 (3)0.02530 (15)0.0318 (6)
H70.6618 (11)0.697 (3)0.0530 (16)0.034 (8)*
C80.70135 (10)0.7926 (2)0.02110 (14)0.0239 (5)
H80.7293 (10)0.739 (3)0.0232 (14)0.025 (7)*
C110.86171 (9)0.7235 (2)0.22024 (14)0.0196 (5)
C120.85504 (11)0.6309 (2)0.27060 (18)0.0320 (6)
H120.8269 (11)0.630 (2)0.3016 (16)0.029 (8)*
C130.89092 (13)0.5344 (3)0.2740 (2)0.0497 (10)
H130.8871 (13)0.483 (3)0.309 (2)0.057 (11)*
C140.93247 (11)0.5312 (3)0.2289 (2)0.0475 (10)
H140.9559 (13)0.470 (3)0.2291 (19)0.059 (11)*
C150.93950 (11)0.6220 (3)0.1785 (2)0.0421 (8)
H150.9641 (13)0.621 (3)0.1479 (19)0.042 (10)*
C160.90429 (10)0.7198 (2)0.17421 (17)0.0302 (6)
H160.9087 (11)0.783 (3)0.1409 (17)0.037 (8)*
C210.85954 (8)0.9885 (2)0.21095 (12)0.0165 (4)
C220.85828 (9)1.0754 (2)0.15625 (14)0.0194 (5)
H220.8358 (11)1.069 (2)0.1194 (16)0.023 (7)*
C230.89408 (9)1.1727 (2)0.15653 (15)0.0229 (5)
H230.8931 (11)1.225 (3)0.1207 (16)0.029 (8)*
C240.92984 (9)1.1828 (2)0.21082 (15)0.0232 (5)
H240.9545 (9)1.247 (2)0.2105 (14)0.018 (6)*
C250.93108 (10)1.0959 (2)0.26490 (15)0.0243 (5)
H250.9544 (10)1.102 (2)0.3003 (15)0.021 (7)*
C260.89619 (9)0.9980 (2)0.26494 (14)0.0209 (5)
H260.8968 (10)0.938 (2)0.3019 (15)0.021 (7)*
C310.77178 (9)0.8556 (2)0.28185 (13)0.0177 (5)
C320.77547 (10)0.9408 (2)0.33720 (14)0.0222 (5)
H320.8047 (11)1.001 (3)0.3383 (15)0.033 (8)*
C330.73757 (10)0.9417 (2)0.38975 (15)0.0270 (6)
H330.7413 (11)0.996 (3)0.4252 (16)0.034 (8)*
C340.69659 (10)0.8593 (2)0.38699 (16)0.0275 (6)
H340.6746 (10)0.859 (2)0.4220 (15)0.019 (7)*
C350.69293 (10)0.7746 (2)0.33214 (15)0.0274 (6)
H350.6645 (11)0.726 (3)0.3307 (15)0.028 (7)*
C360.72998 (10)0.7721 (2)0.27949 (15)0.0248 (5)
H360.7272 (10)0.715 (3)0.2422 (15)0.028 (7)*
Cd10.956982 (7)0.875041 (16)0.031861 (10)0.02295 (5)
Br10.859434 (10)0.91625 (3)0.022661 (14)0.02725 (6)
Br20.995107 (10)1.08317 (2)0.090586 (14)0.02800 (6)
Br30.977350 (11)0.66634 (2)0.086962 (16)0.03278 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0153 (2)0.0127 (2)0.0182 (3)0.0007 (2)0.0006 (2)0.0010 (2)
O10.0229 (8)0.0160 (8)0.0313 (10)0.0014 (6)0.0035 (8)0.0045 (7)
C10.0180 (11)0.0144 (10)0.0184 (12)0.0001 (9)0.0006 (9)0.0010 (9)
C20.0158 (10)0.0156 (10)0.0210 (12)0.0007 (8)0.0019 (9)0.0036 (9)
C30.0184 (10)0.0174 (11)0.0194 (12)0.0026 (8)0.0006 (9)0.0058 (9)
C40.0232 (12)0.0212 (13)0.0301 (15)0.0007 (10)0.0026 (11)0.0018 (11)
C50.0201 (12)0.0340 (15)0.0382 (17)0.0015 (11)0.0061 (12)0.0080 (13)
C60.0291 (14)0.0413 (16)0.0277 (15)0.0098 (12)0.0118 (12)0.0052 (13)
C70.0387 (15)0.0318 (15)0.0250 (14)0.0074 (12)0.0068 (12)0.0036 (12)
C80.0248 (12)0.0250 (12)0.0219 (13)0.0006 (10)0.0012 (10)0.0012 (10)
C110.0173 (10)0.0123 (10)0.0293 (14)0.0003 (8)0.0042 (10)0.0002 (9)
C120.0243 (13)0.0252 (13)0.0463 (18)0.0011 (11)0.0015 (13)0.0132 (13)
C130.0355 (17)0.0246 (14)0.089 (3)0.0019 (12)0.0135 (18)0.0259 (18)
C140.0247 (15)0.0168 (13)0.101 (3)0.0055 (11)0.0127 (17)0.0023 (16)
C150.0214 (13)0.0299 (15)0.075 (3)0.0065 (11)0.0037 (15)0.0066 (16)
C160.0238 (12)0.0228 (13)0.0440 (18)0.0009 (10)0.0018 (12)0.0010 (12)
C210.0163 (10)0.0130 (10)0.0203 (12)0.0015 (8)0.0002 (9)0.0013 (9)
C220.0190 (11)0.0183 (11)0.0208 (12)0.0006 (9)0.0025 (10)0.0025 (10)
C230.0231 (12)0.0185 (11)0.0271 (14)0.0004 (9)0.0007 (10)0.0067 (11)
C240.0201 (11)0.0172 (11)0.0324 (15)0.0047 (9)0.0033 (11)0.0013 (10)
C250.0204 (12)0.0267 (13)0.0257 (14)0.0045 (10)0.0035 (11)0.0009 (11)
C260.0207 (11)0.0222 (11)0.0199 (13)0.0018 (9)0.0009 (9)0.0048 (10)
C310.0180 (10)0.0157 (10)0.0193 (12)0.0013 (8)0.0007 (9)0.0029 (9)
C320.0241 (12)0.0193 (11)0.0233 (13)0.0002 (9)0.0009 (10)0.0003 (10)
C330.0322 (14)0.0246 (13)0.0243 (14)0.0013 (11)0.0040 (11)0.0053 (11)
C340.0281 (13)0.0256 (13)0.0290 (14)0.0035 (10)0.0109 (12)0.0040 (11)
C350.0237 (12)0.0239 (12)0.0345 (16)0.0049 (10)0.0081 (11)0.0012 (11)
C360.0277 (12)0.0196 (11)0.0271 (14)0.0044 (10)0.0024 (11)0.0022 (11)
Cd10.02299 (9)0.02385 (9)0.02202 (9)0.00582 (7)0.00038 (8)0.00068 (7)
Br10.02342 (12)0.03517 (14)0.02317 (13)0.00226 (10)0.00096 (10)0.00185 (11)
Br20.03181 (13)0.03014 (13)0.02204 (13)0.01177 (11)0.00516 (11)0.00515 (11)
Br30.03696 (14)0.02285 (12)0.03854 (17)0.00389 (11)0.01012 (13)0.00145 (12)
Geometric parameters (Å, º) top
P1—C111.789 (2)C15—H150.85 (3)
P1—C311.790 (2)C16—H160.93 (3)
P1—C211.793 (2)C21—C261.390 (3)
P1—C11.799 (2)C21—C221.391 (3)
O1—C21.214 (3)C22—C231.392 (3)
C1—C21.521 (3)C22—H220.91 (3)
C1—H10.94 (3)C23—C241.380 (4)
C1—H20.91 (3)C23—H230.88 (3)
C2—C31.484 (3)C24—C251.382 (4)
C3—C41.394 (3)C24—H240.94 (2)
C3—C81.394 (3)C25—C261.382 (3)
C4—C51.374 (4)C25—H250.90 (3)
C4—H40.88 (3)C26—H260.95 (3)
C5—C61.388 (4)C31—C321.391 (3)
C5—H50.91 (3)C31—C361.400 (3)
C6—C71.382 (4)C32—C331.389 (4)
C6—H60.96 (3)C32—H320.99 (3)
C7—C81.384 (4)C33—C341.377 (4)
C7—H70.94 (3)C33—H330.89 (3)
C8—H80.92 (3)C34—C351.380 (4)
C11—C121.385 (4)C34—H340.87 (3)
C11—C161.397 (4)C35—C361.376 (4)
C12—C131.389 (4)C35—H350.90 (3)
C12—H120.93 (3)C36—H360.94 (3)
C13—C141.366 (5)Cd1—Br32.5243 (4)
C13—H130.86 (4)Cd1—Br12.5523 (3)
C14—C151.373 (5)Cd1—Br2i2.6540 (4)
C14—H140.89 (4)Cd1—Br22.6791 (3)
C15—C161.388 (4)
C11—P1—C31111.04 (11)C16—C15—H15117 (2)
C11—P1—C21105.46 (10)C15—C16—C11119.7 (3)
C31—P1—C21112.83 (10)C15—C16—H16120.6 (19)
C11—P1—C1106.35 (11)C11—C16—H16119.7 (19)
C31—P1—C1107.74 (11)C26—C21—C22120.6 (2)
C21—P1—C1113.25 (11)C26—C21—P1116.96 (18)
C2—C1—P1113.23 (16)C22—C21—P1122.25 (18)
C2—C1—H1115.4 (17)C21—C22—C23119.0 (2)
P1—C1—H1106.2 (17)C21—C22—H22121.9 (17)
C2—C1—H2106.9 (18)C23—C22—H22119.0 (17)
P1—C1—H2106.7 (18)C24—C23—C22120.1 (2)
H1—C1—H2108 (2)C24—C23—H23122.5 (19)
O1—C2—C3122.3 (2)C22—C23—H23117.4 (19)
O1—C2—C1119.2 (2)C23—C24—C25120.6 (2)
C3—C2—C1118.5 (2)C23—C24—H24120.1 (16)
C4—C3—C8119.2 (2)C25—C24—H24119.2 (16)
C4—C3—C2118.0 (2)C26—C25—C24119.9 (2)
C8—C3—C2122.8 (2)C26—C25—H25119.0 (17)
C5—C4—C3120.9 (3)C24—C25—H25121.1 (17)
C5—C4—H4121.0 (18)C25—C26—C21119.7 (2)
C3—C4—H4118.2 (18)C25—C26—H26120.4 (16)
C4—C5—C6119.7 (3)C21—C26—H26119.9 (16)
C4—C5—H5122 (2)C32—C31—C36119.8 (2)
C6—C5—H5118 (2)C32—C31—P1121.25 (18)
C7—C6—C5120.1 (3)C36—C31—P1118.90 (18)
C7—C6—H6119.6 (18)C33—C32—C31119.4 (2)
C5—C6—H6120.4 (18)C33—C32—H32120.7 (17)
C6—C7—C8120.5 (3)C31—C32—H32119.9 (17)
C6—C7—H7120.6 (19)C34—C33—C32120.4 (3)
C8—C7—H7118.8 (19)C34—C33—H33122.2 (19)
C7—C8—C3119.7 (2)C32—C33—H33117.5 (19)
C7—C8—H8120.2 (17)C33—C34—C35120.3 (3)
C3—C8—H8120.0 (17)C33—C34—H34118.1 (17)
C12—C11—C16120.2 (2)C35—C34—H34121.5 (17)
C12—C11—P1123.1 (2)C36—C35—C34120.4 (2)
C16—C11—P1116.77 (19)C36—C35—H35122.1 (18)
C11—C12—C13119.0 (3)C34—C35—H35117.3 (18)
C11—C12—H12122.1 (17)C35—C36—C31119.7 (2)
C13—C12—H12118.9 (17)C35—C36—H36120.0 (17)
C14—C13—C12120.6 (3)C31—C36—H36120.2 (17)
C14—C13—H13123 (2)Br3—Cd1—Br1112.680 (11)
C12—C13—H13116 (3)Br3—Cd1—Br2i114.298 (12)
C13—C14—C15121.1 (3)Br1—Cd1—Br2i111.567 (11)
C13—C14—H14123 (2)Br3—Cd1—Br2119.626 (12)
C15—C14—H14116 (2)Br1—Cd1—Br2104.061 (11)
C14—C15—C16119.4 (3)Br2i—Cd1—Br292.779 (10)
C14—C15—H15124 (2)Cd1i—Br2—Cd187.221 (10)
Br3—Cd1—Br2—Cd1i120.101 (14)Br2i—Cd1—Br2—Cd1i0.0
Br1—Cd1—Br2—Cd1i113.051 (12)P1—C1—C2—O119.1 (3)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1ii0.94 (3)2.48 (3)3.405 (3)167 (2)
C1—H2···Br10.91 (3)2.70 (3)3.584 (2)166 (2)
C16—H16···Br2i0.93 (3)3.02 (3)3.694 (3)131 (2)
C24—H24···Br3i0.94 (2)3.06 (3)3.710 (2)128.0 (19)
C25—H25···Br2iii0.90 (3)3.04 (3)3.718 (3)133 (2)
Symmetry codes: (i) x+2, y+2, z; (ii) x+3/2, y1/2, z; (iii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formula(C26H22OP)2[Cd2Br6]
Mr1467.08
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)120
a, b, c (Å)25.7075 (15), 10.7351 (9), 18.8469 (14)
V3)5201.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.53
Crystal size (mm)0.42 × 0.28 × 0.15
Data collection
DiffractometerBruker SMART 6K CCD
diffractometer
Absorption correctionIntegration
(XPREP in SHELXTL; Bruker, 1998)
Tmin, Tmax0.221, 0.531
No. of measured, independent and
observed [I > 2σ(I)] reflections
30677, 7011, 5580
Rint0.033
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.058, 1.02
No. of reflections7011
No. of parameters377
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.59, 0.35

Computer programs: SMART-NT (Bruker, 1998), SMART-NT, SAINT-NT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-NT (Bruker, 1998), SHELXTL-NT.

Selected geometric parameters (Å, º) top
P1—C111.789 (2)C2—C31.484 (3)
P1—C311.790 (2)Cd1—Br32.5243 (4)
P1—C211.793 (2)Cd1—Br12.5523 (3)
P1—C11.799 (2)Cd1—Br2i2.6540 (4)
O1—C21.214 (3)Cd1—Br22.6791 (3)
C1—C21.521 (3)
C11—P1—C31111.04 (11)C3—C2—C1118.5 (2)
C11—P1—C21105.46 (10)Br3—Cd1—Br1112.680 (11)
C31—P1—C21112.83 (10)Br3—Cd1—Br2i114.298 (12)
C11—P1—C1106.35 (11)Br1—Cd1—Br2i111.567 (11)
C31—P1—C1107.74 (11)Br3—Cd1—Br2119.626 (12)
C21—P1—C1113.25 (11)Br1—Cd1—Br2104.061 (11)
C2—C1—P1113.23 (16)Br2i—Cd1—Br292.779 (10)
O1—C2—C3122.3 (2)Cd1i—Br2—Cd187.221 (10)
O1—C2—C1119.2 (2)
Br3—Cd1—Br2—Cd1i120.101 (14)P1—C1—C2—O119.1 (3)
Br1—Cd1—Br2—Cd1i113.051 (12)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1ii0.94 (3)2.48 (3)3.405 (3)167 (2)
C1—H2···Br10.91 (3)2.70 (3)3.584 (2)166 (2)
C16—H16···Br2i0.93 (3)3.02 (3)3.694 (3)131 (2)
C24—H24···Br3i0.94 (2)3.06 (3)3.710 (2)128.0 (19)
C25—H25···Br2iii0.90 (3)3.04 (3)3.718 (3)133 (2)
Symmetry codes: (i) x+2, y+2, z; (ii) x+3/2, y1/2, z; (iii) x, y+2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds