Download citation
Download citation
link to html
In the title mol­ecule, C24H19Cl2NO4S, the cyclo­hexane ring tends towards a boat conformation and the two tetra­hydro­furan rings adopt envelope conformations. The crystal packing structure is built from infinite molecular chains, stabilized by an intermolecular C—H...O close contact, running along the b direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802021013/ob6194sup1.cif
Contains datablocks global, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802021013/ob61942sup2.hkl
Contains datablock 2

CCDC reference: 202341

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.030
  • wR factor = 0.078
  • Data-to-parameter ratio = 19.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.29 From the CIF: _reflns_number_total 5601 Count of symmetry unique reflns 3193 Completeness (_total/calc) 175.41% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2408 Fraction of Friedel pairs measured 0.754 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

In contrast to the remarkable growth of the chemistry of o-quinoid 10-π electron isobenzofuran ring systems, isobenzofurans having a heterocyclic ring, e.g. furo[3,4-c]pyridines have not been studied so well (Padwa, 1998; Rodrigo, 1988; Bailey et al., 1995; Friedrichsen, 1999). Recently, in a series of papers, Sarkar et al. have addressed this issue including development of novel techniques for the generation and trapping of both stable and unstable furo[3,4-c]pyridines for the synthesis of polycyclic heteroaromatic ring systems (Sarkar et al., 1999; Sarkar, Ghosh & Chow, 2000; Sarkar, Basak & Ghosh, 2000; Sarkar, Basak & Panda, 2002). In this context, the title compound (2) was synthesized by Pummerer reaction of a pyridylmethyl substituted sulfoxide and trapping of the in situ generated furo[3,4-c]pyridine (1) in Diels-Alder reaction with methyl acrylate. The X-ray crystal structure determination of (2) was undertaken in order to elucidate its regio- and stereochemistry which could not be done unambiguously by NMR spectroscopy.

The title compound (2) has three chiral atoms; the C6 atom is the R-chiral center and the atoms C8 and C9 are the S-chiral centers (Fig. 1). The absolute configuration was determined by the Flack parameter (Flack, 1983). Since the title compound was prepared from achiral reagents, the chiral space group is the result of spontaneous resolution. All the chiral atoms belong to the oxabicycloheptane [O1, C3, C4, C6—C9]. The average C—O and C—C bond distances in this moiety are 1.455 Å and 1.520 Å, respectively. As a result of the bulky substituents attached on the oxabicycloheptane in (2), the average C—O bond distance is slightly longer, whereas that of C—C is shorter compared with the corresponding values in the related structure methyl 7-oxabicyclo[2.2.1]heptane-2,3,5,6-tetracarboxylate [C—O 1.433 Å and C—C 1.555 Å; Kohnke et al., 1988]. The cyclohexane ring (C3, C4, C6—C9) tends towards a boat conformation and the two tetrahydrofuran rings [O1, C3, C4, C6, C9 and O1, C6—C9] adopt envelope conformations, which are similar to those in the related structure. Also comparable are the dihedral angles between the O1/C6/C9 and C3/C4/C6/C9 planes [127.6 (1)°], the O1/C6/C9 and C6/C7/C8/C9 planes [121.5 (1)°], and the C3/C4/C6/C9 and C6/C7/C8/C9 planes [110.9 (1)°]; the corresponding values in the related structure are 124°, 124° and 112° (Kohnke et al., 1988).

The pyridine ring (N1, C1—C5) makes a dihedral angle of 40.1 (1)° with the cyclohexane main plane. Atoms Cl1 and Cl2 are displaced on opposite sides of the pyridine ring by 0.046 (1) Å and 0.142 (1) Å. The relative configuration of the other three substituents, methyl carboxylate (O2, O3, C17, C18), thiophenyl (S1, C19—C24) and methoxy phenyl (O4, C10—C16), with respect to the oxabicycloheptane are conditioned by the sp3 hybridization of atoms C6, C8 and C9. The methyl carboxylate is twisted about the C8—C17 bond by an angle of 78.8 (1)° out of the cyclohexane mean plane. The aromatic ring of the thiophenyl and methoxy phenyl make dihedral angles of 38.3 (1) and 29.0 (1)°, respectively, with the cyclohexane.

Within these substituents, the sulfur atom S1 exhibits sp3 hybridization; the angle subtended at this atom is 104.4 (1)°, while the methoxy substituent (atoms O4 and C16) tends to be coplanar with the attached phenyl [being twisted by 5.3 (1)°], as is usually observed in the anysoles (Domiano et al., 1979).

An intramolecular C—H···O close contact is observed in (2), linking atom H24 of the thiophenyl to O1 of the oxabicycloheptane (Fig. 1). In the crystal packing, the molecules are linked by intermolecular C16—H16B···O2i (i: x, y − 1, z) close contacts (Table 2) into one-dimensional molecular chains: in this manner a C(11) (Bernstein et al., 1995) is generated running along the b direction (Fig. 2). Short contacts of Cl2···O3ii [3.20 Å; ii: −1/2 + x, 3/2 − y, −z] are observed in the crystal, interconnecting the molecular chains into a three-dimensional network.

Experimental top

A mixture of 5 ml of dry toluene and 0.13 ml acetic anhydride containing catalytic amount of p-toluene sulfonic acid and 0.1 ml me thyl acrylate was refluxed under argon. To this mixture, 60 mg of o-benzoyl substituted pyridylmethyl sulfoxide in 5 ml toluene was added dropwise over a period of 10 min. The yellow solution was refluxed for an additional 1 h. The bright yellow solution was cooled and washed with saturated aqueous NaHCO3 and dried (Na2SO4). After removal of solvent, the residue was purified by preparative thin-layer chromatography and finally crystallized from ethyl acetate–petroleum ether (1:20) to give colorless crystals of (2) (m.p. 390–392 K).

Refinement top

All the H-atoms were fixed geometrically and were treated as riding atoms, with C—H distances 0.93–0.98 Å and Uiso(H) = 1.2–1.5Ueq(C). The methyl H atoms were constrained, but allowed to rotate about the C—C bonds.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (2), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines denote the intramolecular C—H.·O close contact.
[Figure 2] Fig. 2. The packing structure of (2), viewed down the a axis showing the molecular chains running along the b-direction. Dashed lines denote the intermolecular C—H···O close contacts.
Methyl (1SR,8RS,10SR)-3,5-dichloro-1-(4-methoxyphenyl)-8-(phenylthio)-11- oxa-4-azatricyclo[6.2.1.02,7]undeca-2,4,6-triene-10-carboxylate top
Crystal data top
C24H19Cl2NO4SDx = 1.433 Mg m3
Mr = 488.36Melting point: 391(1)K K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 9.0330 (4) ÅCell parameters from 8828 reflections
b = 10.2107 (5) Åθ = 2.6–28.3°
c = 24.5414 (12) ŵ = 0.41 mm1
V = 2263.53 (19) Å3T = 293 K
Z = 4Block, colorless
F(000) = 10080.42 × 0.40 × 0.40 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
5601 independent reflections
Radiation source: fine-focus sealed tube5068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.6°
ω scansh = 1210
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.846, Tmax = 0.853l = 3226
14401 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.2526P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5601 reflectionsΔρmax = 0.22 e Å3
291 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: (Flack, 1983), 2408 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
C24H19Cl2NO4SV = 2263.53 (19) Å3
Mr = 488.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0330 (4) ŵ = 0.41 mm1
b = 10.2107 (5) ÅT = 293 K
c = 24.5414 (12) Å0.42 × 0.40 × 0.40 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
5601 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5068 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.853Rint = 0.016
14401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.22 e Å3
S = 1.07Δρmin = 0.19 e Å3
5601 reflectionsAbsolute structure: (Flack, 1983), 2408 Friedel pairs
291 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 5 cm and the detector swing angle was −35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.56367 (6)1.20472 (5)0.23745 (2)0.06307 (14)
Cl20.40714 (5)0.86087 (5)0.09270 (2)0.05639 (12)
S11.08814 (4)0.85032 (5)0.197703 (18)0.04903 (11)
O10.87533 (12)0.71753 (12)0.14305 (4)0.0391 (2)
O20.74361 (17)1.02534 (13)0.03342 (6)0.0575 (3)
O30.73125 (15)0.85444 (12)0.02341 (5)0.0502 (3)
O40.43275 (18)0.28787 (14)0.07125 (7)0.0681 (4)
N10.50890 (15)1.02107 (15)0.16700 (6)0.0449 (3)
C10.61473 (19)1.07107 (16)0.19714 (7)0.0437 (4)
C20.76129 (19)1.02881 (17)0.19935 (7)0.0431 (3)
H20.83281.07030.22040.052*
C30.79138 (17)0.92120 (16)0.16792 (7)0.0382 (3)
C40.68269 (16)0.86277 (16)0.13577 (6)0.0356 (3)
C50.54480 (17)0.91943 (17)0.13572 (7)0.0394 (3)
C60.93223 (16)0.84800 (16)0.15330 (6)0.0391 (3)
C70.97466 (18)0.89269 (17)0.09475 (7)0.0433 (4)
H7A0.96720.98700.09090.052*
H7B1.07420.86520.08530.052*
C80.85776 (17)0.82165 (16)0.05931 (6)0.0382 (3)
H8A0.90660.75470.03700.046*
C90.75956 (16)0.75301 (15)0.10425 (6)0.0357 (3)
C100.67251 (17)0.63143 (15)0.09112 (6)0.0380 (3)
C110.5911 (2)0.57482 (19)0.13310 (7)0.0506 (4)
H110.58930.61490.16710.061*
C120.5135 (2)0.4610 (2)0.12523 (8)0.0566 (5)
H120.45970.42470.15380.068*
C130.5148 (2)0.39961 (17)0.07473 (8)0.0482 (4)
C140.5951 (2)0.45447 (17)0.03272 (7)0.0465 (4)
H140.59720.41410.00120.056*
C150.67281 (19)0.57019 (17)0.04120 (7)0.0417 (3)
H150.72600.60690.01260.050*
C160.4390 (3)0.2152 (2)0.02227 (11)0.0728 (6)
H16A0.38300.13590.02630.109*
H16B0.54010.19400.01410.109*
H16C0.39810.26640.00690.109*
C170.77146 (17)0.91378 (16)0.02265 (7)0.0399 (3)
C180.6537 (3)0.9364 (2)0.06226 (9)0.0609 (5)
H18A0.63830.88850.09540.091*
H18B0.71171.01320.06970.091*
H18C0.55980.96190.04740.091*
C191.01318 (18)0.81905 (16)0.26325 (7)0.0423 (3)
C201.0917 (2)0.8708 (2)0.30682 (8)0.0557 (4)
H201.17320.92450.30050.067*
C211.0488 (3)0.8426 (2)0.35956 (8)0.0683 (6)
H211.10330.87500.38870.082*
C220.9255 (3)0.7665 (2)0.36913 (8)0.0646 (5)
H220.89620.74880.40470.078*
C230.8459 (2)0.7168 (2)0.32625 (9)0.0584 (5)
H230.76130.66740.33280.070*
C240.8913 (2)0.74007 (19)0.27318 (8)0.0510 (4)
H240.84010.70270.24420.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0665 (3)0.0595 (3)0.0632 (3)0.0067 (2)0.0121 (2)0.0171 (2)
Cl20.03264 (18)0.0751 (3)0.0614 (3)0.0003 (2)0.01142 (18)0.0094 (2)
S10.02987 (18)0.0676 (3)0.0496 (2)0.00260 (19)0.00715 (17)0.0056 (2)
O10.0332 (5)0.0445 (6)0.0396 (6)0.0034 (4)0.0050 (4)0.0020 (5)
O20.0687 (9)0.0462 (7)0.0575 (8)0.0110 (6)0.0064 (7)0.0009 (6)
O30.0603 (7)0.0467 (6)0.0435 (6)0.0001 (6)0.0109 (5)0.0037 (5)
O40.0705 (9)0.0507 (7)0.0832 (10)0.0176 (7)0.0038 (8)0.0032 (7)
N10.0355 (7)0.0514 (8)0.0479 (8)0.0038 (6)0.0039 (6)0.0002 (6)
C10.0455 (9)0.0429 (8)0.0428 (8)0.0012 (7)0.0070 (7)0.0031 (7)
C20.0404 (8)0.0451 (8)0.0437 (8)0.0033 (7)0.0031 (7)0.0026 (7)
C30.0308 (7)0.0428 (8)0.0410 (8)0.0007 (6)0.0026 (6)0.0027 (7)
C40.0302 (7)0.0418 (8)0.0346 (7)0.0017 (6)0.0007 (5)0.0004 (6)
C50.0293 (7)0.0486 (8)0.0403 (8)0.0011 (6)0.0015 (6)0.0005 (7)
C60.0295 (7)0.0464 (8)0.0415 (8)0.0001 (7)0.0055 (6)0.0024 (7)
C70.0312 (7)0.0533 (9)0.0454 (8)0.0024 (6)0.0009 (6)0.0056 (7)
C80.0326 (7)0.0438 (9)0.0384 (8)0.0034 (6)0.0031 (6)0.0031 (6)
C90.0317 (7)0.0418 (8)0.0335 (7)0.0028 (6)0.0003 (6)0.0015 (6)
C100.0356 (7)0.0398 (8)0.0386 (7)0.0033 (6)0.0005 (6)0.0016 (7)
C110.0570 (10)0.0554 (10)0.0393 (9)0.0093 (9)0.0053 (8)0.0010 (7)
C120.0627 (12)0.0581 (11)0.0491 (10)0.0134 (9)0.0093 (9)0.0083 (8)
C130.0427 (9)0.0407 (8)0.0611 (11)0.0012 (7)0.0030 (8)0.0031 (8)
C140.0476 (9)0.0470 (9)0.0448 (9)0.0028 (8)0.0022 (8)0.0059 (7)
C150.0413 (8)0.0452 (9)0.0385 (8)0.0018 (7)0.0022 (7)0.0001 (7)
C160.0665 (13)0.0458 (10)0.1061 (18)0.0047 (10)0.0079 (13)0.0169 (11)
C170.0336 (8)0.0450 (9)0.0411 (8)0.0006 (6)0.0030 (6)0.0047 (7)
C180.0671 (12)0.0580 (12)0.0575 (12)0.0053 (9)0.0215 (10)0.0151 (9)
C190.0367 (8)0.0444 (8)0.0458 (8)0.0053 (6)0.0056 (7)0.0022 (7)
C200.0492 (10)0.0607 (11)0.0573 (10)0.0047 (9)0.0061 (9)0.0125 (9)
C210.0732 (13)0.0817 (15)0.0501 (11)0.0018 (12)0.0090 (10)0.0184 (10)
C220.0759 (14)0.0713 (13)0.0468 (10)0.0081 (12)0.0047 (10)0.0032 (9)
C230.0569 (11)0.0565 (11)0.0619 (12)0.0030 (9)0.0009 (9)0.0071 (10)
C240.0486 (10)0.0559 (10)0.0486 (10)0.0078 (8)0.0106 (8)0.0028 (8)
Geometric parameters (Å, º) top
Cl1—C11.7475 (17)C10—C151.375 (2)
Cl2—C51.7375 (16)C10—C111.392 (2)
S1—C191.7744 (18)C11—C121.371 (3)
S1—C61.7808 (15)C11—H110.9300
O1—C61.450 (2)C12—C131.389 (3)
O1—C91.4600 (18)C12—H120.9300
O2—C171.196 (2)C13—C141.380 (3)
O3—C171.333 (2)C14—C151.390 (2)
O3—C181.449 (2)C14—H140.9300
O4—C131.363 (2)C15—H150.9300
O4—C161.414 (3)C16—H16A0.9600
N1—C11.312 (2)C16—H16B0.9600
N1—C51.331 (2)C16—H16C0.9600
C1—C21.393 (2)C18—H18A0.9600
C2—C31.370 (2)C18—H18B0.9600
C2—H20.9300C18—H18C0.9600
C3—C41.394 (2)C19—C241.386 (2)
C3—C61.519 (2)C19—C201.388 (2)
C4—C51.373 (2)C20—C211.382 (3)
C4—C91.529 (2)C20—H200.9300
C6—C71.556 (2)C21—C221.378 (3)
C7—C81.548 (2)C21—H210.9300
C7—H7A0.9700C22—C231.372 (3)
C7—H7B0.9700C22—H220.9300
C8—C171.517 (2)C23—C241.386 (3)
C8—C91.579 (2)C23—H230.9300
C8—H8A0.9800C24—H240.9300
C9—C101.504 (2)
C19—S1—C6104.51 (8)C12—C11—H11119.4
C6—O1—C998.00 (11)C10—C11—H11119.4
C17—O3—C18115.28 (14)C11—C12—C13120.25 (17)
C13—O4—C16118.10 (17)C11—C12—H12119.9
C1—N1—C5116.80 (14)C13—C12—H12119.9
N1—C1—C2126.42 (16)O4—C13—C14125.37 (17)
N1—C1—Cl1115.51 (13)O4—C13—C12115.40 (17)
C2—C1—Cl1118.06 (14)C14—C13—C12119.23 (16)
C3—C2—C1114.51 (15)C13—C14—C15119.92 (16)
C3—C2—H2122.7C13—C14—H14120.0
C1—C2—H2122.7C15—C14—H14120.0
C2—C3—C4121.50 (15)C10—C15—C14121.25 (16)
C2—C3—C6133.96 (15)C10—C15—H15119.4
C4—C3—C6104.22 (13)C14—C15—H15119.4
C5—C4—C3117.32 (15)O4—C16—H16A109.5
C5—C4—C9136.10 (14)O4—C16—H16B109.5
C3—C4—C9106.28 (13)H16A—C16—H16B109.5
N1—C5—C4123.30 (15)O4—C16—H16C109.5
N1—C5—Cl2116.39 (12)H16A—C16—H16C109.5
C4—C5—Cl2120.30 (13)H16B—C16—H16C109.5
O1—C6—C3101.32 (11)O2—C17—O3124.26 (16)
O1—C6—C7101.34 (12)O2—C17—C8124.58 (16)
C3—C6—C7106.27 (13)O3—C17—C8111.16 (14)
O1—C6—S1113.50 (10)O3—C18—H18A109.5
C3—C6—S1120.76 (12)O3—C18—H18B109.5
C7—C6—S1111.50 (11)H18A—C18—H18B109.5
C8—C7—C6102.32 (12)O3—C18—H18C109.5
C8—C7—H7A111.3H18A—C18—H18C109.5
C6—C7—H7A111.3H18B—C18—H18C109.5
C8—C7—H7B111.3C24—C19—C20119.50 (17)
C6—C7—H7B111.3C24—C19—S1124.55 (13)
H7A—C7—H7B109.2C20—C19—S1115.77 (14)
C17—C8—C7113.14 (14)C21—C20—C19119.89 (19)
C17—C8—C9113.62 (12)C21—C20—H20120.1
C7—C8—C9101.46 (12)C19—C20—H20120.1
C17—C8—H8A109.4C22—C21—C20120.3 (2)
C7—C8—H8A109.4C22—C21—H21119.9
C9—C8—H8A109.4C20—C21—H21119.9
O1—C9—C10108.02 (12)C23—C22—C21120.1 (2)
O1—C9—C4100.21 (11)C23—C22—H22119.9
C10—C9—C4118.42 (13)C21—C22—H22119.9
O1—C9—C899.39 (11)C22—C23—C24120.1 (2)
C10—C9—C8120.68 (13)C22—C23—H23119.9
C4—C9—C8106.45 (12)C24—C23—H23119.9
C15—C10—C11118.14 (16)C19—C24—C23120.00 (18)
C15—C10—C9124.39 (14)C19—C24—H24120.0
C11—C10—C9117.42 (14)C23—C24—H24120.0
C12—C11—C10121.20 (17)
C5—N1—C1—C20.5 (3)C3—C4—C9—C872.97 (15)
C5—N1—C1—Cl1179.77 (12)C17—C8—C9—O1158.87 (13)
N1—C1—C2—C32.7 (3)C7—C8—C9—O137.12 (14)
Cl1—C1—C2—C3178.06 (13)C17—C8—C9—C1083.56 (17)
C1—C2—C3—C41.4 (2)C7—C8—C9—C10154.68 (13)
C1—C2—C3—C6173.80 (17)C17—C8—C9—C455.21 (17)
C2—C3—C4—C51.6 (2)C7—C8—C9—C466.54 (14)
C6—C3—C4—C5172.70 (14)O1—C9—C10—C15111.84 (16)
C2—C3—C4—C9176.32 (15)C4—C9—C10—C15135.33 (16)
C6—C3—C4—C91.99 (16)C8—C9—C10—C151.3 (2)
C1—N1—C5—C43.1 (3)O1—C9—C10—C1165.52 (18)
C1—N1—C5—Cl2175.91 (13)C4—C9—C10—C1147.3 (2)
C3—C4—C5—N14.1 (3)C8—C9—C10—C11178.64 (15)
C9—C4—C5—N1176.75 (16)C15—C10—C11—C120.2 (3)
C3—C4—C5—Cl2174.85 (12)C9—C10—C11—C12177.33 (18)
C9—C4—C5—Cl22.2 (3)C10—C11—C12—C130.0 (3)
C9—O1—C6—C352.18 (13)C16—O4—C13—C145.6 (3)
C9—O1—C6—C757.19 (12)C16—O4—C13—C12175.04 (19)
C9—O1—C6—S1176.84 (10)C11—C12—C13—O4179.37 (19)
C2—C3—C6—O1152.88 (18)C11—C12—C13—C140.1 (3)
C4—C3—C6—O133.84 (15)O4—C13—C14—C15179.06 (17)
C2—C3—C6—C7101.6 (2)C12—C13—C14—C150.3 (3)
C4—C3—C6—C771.66 (15)C11—C10—C15—C140.4 (3)
C2—C3—C6—S126.6 (3)C9—C10—C15—C14176.90 (15)
C4—C3—C6—S1160.16 (12)C13—C14—C15—C100.5 (3)
C19—S1—C6—O174.10 (12)C18—O3—C17—O22.3 (3)
C19—S1—C6—C346.42 (14)C18—O3—C17—C8177.37 (15)
C19—S1—C6—C7172.22 (12)C7—C8—C17—O230.9 (2)
O1—C6—C7—C832.08 (14)C9—C8—C17—O284.1 (2)
C3—C6—C7—C873.40 (15)C7—C8—C17—O3148.76 (14)
S1—C6—C7—C8153.15 (11)C9—C8—C17—O396.23 (16)
C6—C7—C8—C17125.30 (14)C6—S1—C19—C2432.80 (17)
C6—C7—C8—C93.22 (15)C6—S1—C19—C20152.29 (14)
C6—O1—C9—C10174.65 (12)C24—C19—C20—C210.5 (3)
C6—O1—C9—C450.10 (13)S1—C19—C20—C21174.68 (17)
C6—O1—C9—C858.64 (12)C19—C20—C21—C222.0 (3)
C5—C4—C9—O1156.72 (18)C20—C21—C22—C230.9 (3)
C3—C4—C9—O130.09 (15)C21—C22—C23—C241.7 (3)
C5—C4—C9—C1039.7 (3)C20—C19—C24—C232.1 (3)
C3—C4—C9—C10147.15 (14)S1—C19—C24—C23176.84 (16)
C5—C4—C9—C8100.2 (2)C22—C23—C24—C193.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O2i0.962.563.377 (3)142
C24—H24···O10.932.513.205 (2)132
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC24H19Cl2NO4S
Mr488.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.0330 (4), 10.2107 (5), 24.5414 (12)
V3)2263.53 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.42 × 0.40 × 0.40
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.846, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
14401, 5601, 5068
Rint0.016
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.07
No. of reflections5601
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19
Absolute structure(Flack, 1983), 2408 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected bond lengths (Å) top
O1—C61.450 (2)C7—C81.548 (2)
O1—C91.4600 (18)C8—C91.579 (2)
C6—C71.556 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O2i0.962.563.377 (3)142
C24—H24···O10.932.513.205 (2)132
Symmetry code: (i) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds