Download citation
Download citation
link to html
Crystals of the title compound, C15H14N4O4, were obtained from a condensation reaction between 2,4-di­nitro­phenyl­hydrazine and propio­phenone. The compound crystallizes in an E configuration. Within the di­nitro­phenyl ring the distances [average 1.417 (4) Å] of C-C bonds ipso to the amino group are significantly longer than the average distance of 1.375 (4) Å for the other C-C bonds in the same phenyl ring. The van der Waals contact between the methyl and nitro groups from neighboring mol­ecules results in the deviation of the ethyl group from the phenyl plane of the propio­phenone group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680202175X/om6120sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680202175X/om6120Isup2.hkl
Contains datablock I

CCDC reference: 202359

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.043
  • wR factor = 0.151
  • Data-to-parameter ratio = 13.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

As some phenylhydrazone derivatives have been shown to be potentially DNA damaging and mutagenic agents (Okabe et al., 1993), a series of new phenylhydrazone derivatives have been synthesized in the laboratory. In order to investigate the relationship of the biological activity and the molecular structure, the X-ray structure determination of the title compound, (I), was carried out and is presented here.

The molecular structure of (I) is shown in Fig. 1. The molecule has an E configuration. Within the C1-phenyl ring, an appreciable difference in C—C bond distances is observed; this is consistent with the situation in acetophenone 2,4-dinitrophenylhydrazone (Shan et al., 2002). The N3···O4 separation of 2.611 (3) Å and the N3—H3···O4 angle of 128° suggest the existence of intramoleculaar hydrogen bonding between the amino and the neighboring nitro groups.

The C15···O2(1 − x, 1 − y, 1 − z) separation of 3.418 (5) Å suggests there is a van der Waals contact between the C15-methyl group and the N1-nitro group of neighboring molecule. This may be responsible for the twist of the C14/C7/N4 plane from the C8-phenyl ring plane signified by the interplanarangle of 11.2 (2)° and the atomic displacements of 0.302 (2) (C14) and −0.162 (3) Å (N4) from the C8-phenyl plane, as shown in Fig. 2.

Experimental top

H2SO4 (98%, 0.5 ml) was added dropwise to an ethanol solution (20 ml) containing 2,4-dinitrophenylhydrazine (0.40 g, 0.2 mmol) at 333 K. Then propiophenone (0.27 g, 0.2 mmol) was added slowly to the above solution with continuous stirring. Red crystals of the title compound appeared immediately. The solution was cooled to room temperature and the crystals isolated. Recrystallization was performed twice, from chloroform and acetone in turn, to obtain well shaped single crystals.

Refinement top

The H atoms were placed in calculated positions, with C—H = 0.93—0.97 Å and N—H = 0.86 Å. The torsion angle of the C15-methyl group was refined. All H atoms were included in the final cycles of refinement in the riding mode, with Uiso(H) = 1.2Ueq of carrier atoms.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1985); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compond with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view showing the van der Waals contact between the C15-methyl and N1-nitro groups. [Symmetry code: (i) 1 − x, 1 − y, 1 − z.]
(I) top
Crystal data top
C15H14N4O4F(000) = 656
Mr = 314.30Dx = 1.406 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 13.976 (2) Åθ = 4.6–12.5°
b = 15.380 (4) ŵ = 0.11 mm1
c = 7.0465 (18) ÅT = 298 K
β = 101.38 (2)°Prism, red
V = 1484.9 (6) Å30.55 × 0.45 × 0.35 mm
Z = 4
Data collection top
Rigaku AFC-7S
diffractometer
Rint = 0.065
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.6°
Graphite monochromatorh = 1716
ω/2θ scansk = 180
3168 measured reflectionsl = 08
2920 independent reflections3 standard reflections every 150 reflections
1124 reflections with I > 2σ(I) intensity decay: 0.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0665P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
2920 reflectionsΔρmax = 0.19 e Å3
210 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (13)
Crystal data top
C15H14N4O4V = 1484.9 (6) Å3
Mr = 314.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.976 (2) ŵ = 0.11 mm1
b = 15.380 (4) ÅT = 298 K
c = 7.0465 (18) Å0.55 × 0.45 × 0.35 mm
β = 101.38 (2)°
Data collection top
Rigaku AFC-7S
diffractometer
Rint = 0.065
3168 measured reflections3 standard reflections every 150 reflections
2920 independent reflections intensity decay: 0.3%
1124 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 0.95Δρmax = 0.19 e Å3
2920 reflectionsΔρmin = 0.17 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.80295 (17)0.57586 (17)1.1082 (4)0.0733 (7)
O20.77758 (16)0.44078 (17)1.0329 (4)0.0724 (7)
O30.55603 (19)0.78262 (15)0.8974 (4)0.0871 (9)
O40.41581 (18)0.74987 (14)0.7271 (4)0.0747 (8)
N10.75102 (19)0.5166 (2)1.0292 (4)0.0552 (7)
N20.4982 (2)0.72865 (16)0.8146 (4)0.0574 (8)
N30.37046 (17)0.58812 (15)0.6397 (4)0.0481 (7)
H30.34660.63980.63520.058*
N40.31422 (18)0.51961 (14)0.5545 (3)0.0455 (7)
C10.4629 (2)0.57305 (17)0.7298 (4)0.0387 (7)
C20.5272 (2)0.63907 (17)0.8188 (4)0.0429 (8)
C30.6211 (2)0.62040 (19)0.9164 (4)0.0463 (8)
H3A0.66180.66470.97500.056*
C40.6532 (2)0.53652 (19)0.9255 (4)0.0426 (7)
C50.5938 (2)0.46978 (18)0.8367 (4)0.0445 (8)
H50.61710.41300.84250.053*
C60.5013 (2)0.48765 (17)0.7410 (4)0.0420 (7)
H60.46230.44250.68140.050*
C70.2229 (2)0.53496 (19)0.4898 (4)0.0441 (8)
C80.1667 (2)0.45925 (19)0.3949 (4)0.0454 (8)
C90.0727 (2)0.4683 (2)0.2878 (5)0.0614 (10)
H90.04250.52250.27890.074*
C100.0234 (2)0.3977 (3)0.1944 (5)0.0740 (12)
H100.03950.40480.12270.089*
C110.0659 (3)0.3180 (3)0.2063 (6)0.0716 (11)
H110.03260.27090.14180.086*
C120.1582 (3)0.3075 (2)0.3138 (6)0.0710 (11)
H120.18720.25280.32390.085*
C130.2079 (2)0.3772 (2)0.4068 (5)0.0586 (9)
H130.27060.36920.47910.070*
C140.1735 (2)0.6207 (2)0.5064 (5)0.0560 (9)
H14A0.20110.64680.63050.067*
H14B0.10470.61060.50270.067*
C150.1842 (3)0.6837 (2)0.3471 (6)0.0745 (11)
H15A0.25220.69340.34880.089*
H15C0.15340.73780.36710.089*
H15B0.15370.65970.22410.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0600 (15)0.0806 (17)0.0711 (17)0.0114 (14)0.0071 (13)0.0024 (15)
O20.0606 (15)0.0683 (17)0.0833 (18)0.0227 (13)0.0019 (13)0.0099 (13)
O30.0819 (17)0.0361 (12)0.129 (2)0.0082 (13)0.0155 (16)0.0100 (15)
O40.0651 (16)0.0397 (12)0.109 (2)0.0123 (12)0.0085 (15)0.0025 (13)
N10.0493 (18)0.0617 (19)0.0535 (18)0.0055 (16)0.0072 (14)0.0082 (15)
N20.0607 (19)0.0341 (16)0.073 (2)0.0011 (14)0.0029 (16)0.0007 (14)
N30.0451 (14)0.0333 (13)0.0617 (17)0.0038 (11)0.0006 (13)0.0041 (13)
N40.0455 (16)0.0387 (14)0.0498 (16)0.0005 (13)0.0031 (12)0.0010 (12)
C10.0435 (17)0.0332 (16)0.0399 (17)0.0003 (14)0.0093 (14)0.0006 (14)
C20.0484 (19)0.0297 (15)0.050 (2)0.0025 (14)0.0077 (15)0.0011 (14)
C30.0429 (17)0.0428 (18)0.052 (2)0.0059 (14)0.0056 (15)0.0010 (15)
C40.0391 (16)0.0452 (18)0.0435 (18)0.0054 (14)0.0080 (14)0.0086 (15)
C50.054 (2)0.0332 (16)0.0471 (19)0.0040 (14)0.0112 (16)0.0019 (14)
C60.0500 (18)0.0320 (16)0.0427 (18)0.0017 (14)0.0063 (15)0.0002 (14)
C70.0448 (18)0.0464 (19)0.0417 (18)0.0072 (14)0.0104 (14)0.0072 (15)
C80.0413 (17)0.0475 (18)0.0476 (19)0.0010 (15)0.0091 (15)0.0085 (16)
C90.044 (2)0.065 (2)0.072 (2)0.0037 (17)0.0041 (18)0.004 (2)
C100.041 (2)0.096 (3)0.078 (3)0.012 (2)0.0057 (18)0.002 (2)
C110.059 (2)0.075 (3)0.078 (3)0.018 (2)0.007 (2)0.015 (2)
C120.069 (2)0.051 (2)0.087 (3)0.0094 (19)0.001 (2)0.003 (2)
C130.0478 (19)0.053 (2)0.067 (2)0.0030 (16)0.0074 (17)0.0008 (18)
C140.058 (2)0.0491 (19)0.062 (2)0.0077 (17)0.0134 (17)0.0013 (17)
C150.075 (2)0.060 (2)0.088 (3)0.014 (2)0.015 (2)0.016 (2)
Geometric parameters (Å, º) top
O1—N11.228 (3)C7—C81.488 (4)
O2—N11.222 (3)C7—C141.504 (4)
O3—N21.223 (3)C8—C131.383 (4)
O4—N21.238 (3)C8—C91.387 (4)
N1—C41.450 (4)C9—C101.381 (5)
N2—C21.435 (3)C9—H90.930
N3—C11.343 (3)C10—C111.357 (5)
N3—N41.379 (3)C10—H100.930
N3—H30.860C11—C121.371 (5)
N4—C71.289 (3)C11—H110.930
C1—C61.415 (4)C12—C131.373 (4)
C1—C21.418 (4)C12—H120.930
C2—C31.386 (4)C13—H130.930
C3—C41.363 (4)C14—C151.512 (4)
C3—H3A0.930C14—H14A0.970
C4—C51.389 (4)C14—H14B0.970
C5—C61.363 (4)C15—H15A0.960
C5—H50.930C15—H15C0.960
C6—H60.930C15—H15B0.960
O2—N1—O1123.3 (3)C13—C8—C9117.6 (3)
O2—N1—C4117.7 (3)C13—C8—C7120.6 (3)
O1—N1—C4119.0 (3)C9—C8—C7121.7 (3)
O3—N2—O4121.4 (2)C10—C9—C8120.6 (3)
O3—N2—C2118.9 (3)C10—C9—H9119.7
O4—N2—C2119.7 (3)C8—C9—H9119.7
C1—N3—N4119.1 (2)C11—C10—C9120.7 (3)
C1—N3—H3120.4C11—C10—H10119.7
N4—N3—H3120.4C9—C10—H10119.7
C7—N4—N3117.0 (2)C10—C11—C12119.6 (3)
N3—C1—C6120.4 (3)C10—C11—H11120.2
N3—C1—C2123.6 (2)C12—C11—H11120.2
C6—C1—C2116.1 (3)C11—C12—C13120.3 (3)
C3—C2—C1121.8 (2)C11—C12—H12119.9
C3—C2—N2116.5 (3)C13—C12—H12119.9
C1—C2—N2121.8 (3)C12—C13—C8121.2 (3)
C4—C3—C2119.3 (3)C12—C13—H13119.4
C4—C3—H3A120.3C8—C13—H13119.4
C2—C3—H3A120.3C7—C14—C15112.9 (3)
C3—C4—C5121.1 (3)C7—C14—H14A109.0
C3—C4—N1119.5 (3)C15—C14—H14A109.0
C5—C4—N1119.4 (3)C7—C14—H14B109.0
C6—C5—C4119.9 (3)C15—C14—H14B109.0
C6—C5—H5120.1H14A—C14—H14B107.8
C4—C5—H5120.1C14—C15—H15A109.5
C5—C6—C1121.8 (3)C14—C15—H15C109.5
C5—C6—H6119.1H15A—C15—H15C109.5
C1—C6—H6119.1C14—C15—H15B109.5
N4—C7—C8114.5 (3)H15A—C15—H15B109.5
N4—C7—C14124.8 (3)H15C—C15—H15B109.5
C8—C7—C14120.8 (3)
C1—N3—N4—C7172.1 (3)N1—C4—C5—C6179.1 (3)
N4—N3—C1—C61.5 (4)C4—C5—C6—C10.4 (4)
N4—N3—C1—C2178.9 (3)N3—C1—C6—C5177.9 (3)
N3—C1—C2—C3177.7 (3)C2—C1—C6—C51.8 (4)
C6—C1—C2—C32.0 (4)N3—N4—C7—C8178.4 (2)
N3—C1—C2—N21.6 (5)N3—N4—C7—C142.0 (4)
C6—C1—C2—N2178.7 (3)N4—C7—C8—C1310.0 (4)
O3—N2—C2—C30.8 (4)C14—C7—C8—C13169.6 (3)
O4—N2—C2—C3178.8 (3)N4—C7—C8—C9168.3 (3)
O3—N2—C2—C1178.5 (3)C14—C7—C8—C912.1 (4)
O4—N2—C2—C11.9 (5)C13—C8—C9—C101.1 (5)
C1—C2—C3—C40.8 (4)C7—C8—C9—C10177.3 (3)
N2—C2—C3—C4179.9 (3)C8—C9—C10—C110.3 (5)
C2—C3—C4—C50.8 (5)C9—C10—C11—C120.7 (6)
C2—C3—C4—N1179.3 (3)C10—C11—C12—C130.9 (6)
O2—N1—C4—C3179.4 (3)C11—C12—C13—C80.1 (6)
O1—N1—C4—C30.5 (4)C9—C8—C13—C120.9 (5)
O2—N1—C4—C50.5 (4)C7—C8—C13—C12177.5 (3)
O1—N1—C4—C5179.7 (3)N4—C7—C14—C1584.1 (4)
C3—C4—C5—C61.0 (4)C8—C7—C14—C1596.4 (3)

Experimental details

Crystal data
Chemical formulaC15H14N4O4
Mr314.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.976 (2), 15.380 (4), 7.0465 (18)
β (°) 101.38 (2)
V3)1484.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.55 × 0.45 × 0.35
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3168, 2920, 1124
Rint0.065
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.151, 0.95
No. of reflections2920
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1985), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N1—C41.450 (4)N3—N41.379 (3)
N2—C21.435 (3)N4—C71.289 (3)
N3—C11.343 (3)
O2—N1—O1123.3 (3)C1—N3—N4119.1 (2)
O3—N2—O4121.4 (2)C7—N4—N3117.0 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds