Download citation
Download citation
link to html
The title compound, C26H30O7, was obtained by the Grignard reaction of one mol­ecule of 4-methoxy­benzyl­magnesium chloride with two mol­ecules of 3,5-di­methoxy­benz­aldehyde. The two new chiral centers have the same absolute configuration R (S), and the two hydroxyl groups, surrounded by the three benzene groups, form an intramolecular hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020251/ww6051sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020251/ww6051Isup2.hkl
Contains datablock I

CCDC reference: 202329

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.050
  • wR factor = 0.138
  • Data-to-parameter ratio = 14.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Grignard reaction is one of the important methods of preparing stilbene derivatives (Campen et al., 1948). In this paper, a very interesting by-product, the title compound, (I), has been isolated from the Grignard reaction between one molecule of 4-methoxybenzylmagnesium chloride with two molecules of 3,5-dimethoxybenzaldehyde.

From the molecular structure illustrated in Fig. 1, the two new chiral centers, C9 and C18, adopt the same absolute configuration R (S). It seems that the formation of the second chiral center, C9, is controlled by the first one, C18. The two benzene rings, A and B, adopt anti conformations, as shown in Fig. 1, and the two hydroxy groups (O1H1 and O2H2) surrounded by the three benzene rings form an intermolecular hydrogen bond, viz. O1—H1···O2. As expected, Csp3—Csp3 hybridized bond length C9—C10 [1.532 (3) Å] is obviously longer than those of Csp2—Csp3 hybridized C1—C9 [1.507 (3) Å] and C10—C11 [1.509 (3) Å].

It was found that the five methoxy groups with varied stretching directions are almost coplanar with their attached benzene rings. The angle O4—C3—C4 [124.3 (3)°] is larger than that of O4—C3—C2 [115.0 (2)°]. It was assumed that this conformation will minimize the van der Waals interaction between the H atom on C4 and the C7 methyl group. The other four methoxy groups present the same structures. This kind of `open-mouthed' arrangement of methoxy groups were also found in other compounds (Zhang et al., 2001; Zheng et al., 2001). The angle between ring planes A and B is 11.4 (3)° and that between ring plane A and C is 85.2 (3)°. [Please define these planes] The torsion angles C6—C1—C9—O1 and C11—C16—C18—O2 are 56.8 (3) and 50.1 (3)°, respectively,while O2—C18—C19—C24 is −0.8 (3)°.

Experimental top

Under the protection of N2, a mixture of anhydrous ethyl ether (30 ml), magnesium turnings (1.2 g) and magnesium powder (1.2 g) with a small amount of iodine was added slowly to a solution of 4-methoxybenzyl chloride (3.92 g, 0.025 mol) in anhydrous ethyl ether (20 ml). The mixture was warmed to initiate the reaction, and then the remaining 4-methoxybenzyl chloride was added at a rate to maintain a gentle reflux. The reaction mixture was stirred under reflux for an additional 5 h and then treated dropwise at room temperature with a solution of 3,5-dimethoxybenzaldehyde (4.2 g, 0.025 mol) in of dry ethyl ether (30 ml). The reaction mixture was heated at reflux for an additional 4 h and was then treated cautiously with dilute HCl. The organic layer was separated and the aqueous layer extracted with ethyl ether. The combined organic extract was washed with water (30 ml) and brine (30 ml). After drying over anhydrous MgSO4, the solvent was evaporated under reduced pressure, and the residue was subjected to column chromatography on silica gel (ethyl acetate/petroleum ether = 1:3). The last fraction provided the title compound (I); yield 28%, m.p. 409.5– 410.5 K. 1H NMR (400 MHz, CDCl3, p.p.m.): δ 1.64 (2H, broad), 2.90 (2H, m), 3.77 (15H, t), 4.79 (1H, m), 5.83 (1H, s), 6.34 (2H, d), 6.45 (2H, d), 6.53 (2H, d), 6.80 (1H, d), 6.32 (1H, d), 7.07 (2H, d). Single crystals suitable for X-ray analysis were obtained by slow evaporation of solution in ethanol.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram of (I), viewed along c axis.
1-(3,5-dimethoxyphenyl)-2-[2-(3,5-dimethoxyphenyl)hydroxymethyl-4- methoxyphenyl]ethanol top
Crystal data top
C26H30O7F(000) = 968
Mr = 454.50Dx = 1.225 Mg m3
Monoclinic, P21/cMelting point = 409.5–410.5 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.382 (9) ÅCell parameters from 996 reflections
b = 23.700 (15) Åθ = 2.6–22.2°
c = 8.664 (6) ŵ = 0.09 mm1
β = 104.313 (12)°T = 293 K
V = 2464 (3) Å3Prism, colorless
Z = 40.40 × 0.30 × 0.30 mm
Data collection top
Bruker CCD area-detector
diffractometer
4346 independent reflections
Radiation source: fine-focus sealed tube2601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1214
Tmin = 0.965, Tmax = 0.974k = 2728
10041 measured reflectionsl = 910
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.07P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.050(Δ/σ)max = 0.003
wR(F2) = 0.138Δρmax = 0.18 e Å3
S = 1.05Δρmin = 0.21 e Å3
4346 reflectionsExtinction correction: SHELXL97
305 parametersExtinction coefficient: 0.026 (3)
0 restraints
Crystal data top
C26H30O7V = 2464 (3) Å3
Mr = 454.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.382 (9) ŵ = 0.09 mm1
b = 23.700 (15) ÅT = 293 K
c = 8.664 (6) Å0.40 × 0.30 × 0.30 mm
β = 104.313 (12)°
Data collection top
Bruker CCD area-detector
diffractometer
4346 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2601 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.974Rint = 0.038
10041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
4346 reflectionsΔρmin = 0.21 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13631 (15)0.22374 (7)0.1250 (2)0.0492 (5)
H10.10920.22610.20210.074*
O20.05239 (14)0.21564 (7)0.37502 (19)0.0488 (5)
H20.07130.23400.45760.073*
O30.38208 (16)0.21372 (9)0.1049 (2)0.0688 (6)
O40.48118 (17)0.07787 (10)0.0136 (2)0.0789 (7)
O50.46271 (16)0.12714 (10)0.5388 (2)0.0751 (6)
O60.12277 (15)0.04906 (8)0.7254 (2)0.0665 (6)
O70.27788 (16)0.04966 (10)0.5200 (3)0.0842 (7)
C10.2600 (2)0.14343 (10)0.1517 (3)0.0423 (6)
C20.3207 (2)0.11973 (11)0.0554 (3)0.0501 (7)
H2A0.29000.11690.05370.060*
C30.4279 (2)0.09991 (11)0.1211 (3)0.0521 (7)
C40.4740 (2)0.10325 (11)0.2824 (3)0.0539 (7)
H40.54590.09020.32610.065*
C50.4111 (2)0.12641 (12)0.3785 (3)0.0523 (7)
C60.3056 (2)0.14732 (11)0.3158 (3)0.0487 (7)
H60.26540.16380.38150.058*
C70.5934 (2)0.05944 (16)0.0700 (4)0.0910 (11)
H7A0.63880.09040.11970.137*
H7B0.62040.04580.01790.137*
H7C0.59670.02970.14610.137*
C80.4006 (3)0.14650 (19)0.6460 (4)0.0972 (13)
H8A0.37920.18510.62230.146*
H8B0.44550.14380.75320.146*
H8C0.33500.12370.63480.146*
C90.1437 (2)0.16530 (10)0.0837 (3)0.0436 (6)
H90.12880.16300.03260.052*
C100.0560 (2)0.12933 (10)0.1353 (3)0.0433 (6)
H10A0.05680.09170.09160.052*
H10B0.07630.12610.25050.052*
C110.06072 (19)0.15270 (10)0.0832 (3)0.0383 (6)
C120.1212 (2)0.14265 (11)0.0733 (3)0.0487 (7)
H120.08830.12160.14000.058*
C130.2270 (2)0.16257 (11)0.1319 (3)0.0499 (7)
H130.26530.15450.23620.060*
C140.2770 (2)0.19470 (11)0.0359 (3)0.0451 (6)
C150.2191 (2)0.20578 (10)0.1194 (3)0.0436 (6)
H150.25230.22770.18400.052*
C160.1122 (2)0.18461 (9)0.1805 (3)0.0368 (6)
C170.4397 (3)0.24400 (17)0.0078 (4)0.0962 (13)
H17A0.44540.22090.08100.144*
H17B0.51300.25360.06950.144*
H17C0.39950.27790.03060.144*
C180.0585 (2)0.19563 (10)0.3566 (3)0.0385 (6)
H180.10140.22540.39310.046*
C190.06277 (19)0.14303 (10)0.4562 (3)0.0357 (6)
C200.0313 (2)0.11843 (11)0.5499 (3)0.0435 (6)
H200.10070.13470.55690.052*
C210.0236 (2)0.06924 (10)0.6345 (3)0.0423 (6)
C220.0781 (2)0.04401 (10)0.6261 (3)0.0443 (6)
H220.08300.01050.67970.053*
C230.1721 (2)0.06995 (11)0.5358 (3)0.0479 (7)
C240.1657 (2)0.11900 (11)0.4515 (3)0.0453 (6)
H240.23050.13580.39170.054*
C250.1209 (3)0.00009 (13)0.8181 (4)0.0746 (10)
H25A0.07420.00630.88980.112*
H25B0.19520.00870.87810.112*
H25C0.09200.03120.74910.112*
C260.2938 (3)0.00098 (19)0.6032 (6)0.141 (2)
H26A0.25360.02990.57190.212*
H26B0.37180.00800.57920.212*
H26C0.26690.00740.71560.212*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0565 (12)0.0483 (11)0.0444 (11)0.0075 (9)0.0155 (9)0.0123 (8)
O20.0560 (12)0.0530 (12)0.0371 (10)0.0149 (9)0.0109 (8)0.0123 (8)
O30.0521 (13)0.0898 (15)0.0564 (12)0.0195 (11)0.0021 (10)0.0080 (11)
O40.0526 (13)0.1078 (18)0.0768 (15)0.0248 (12)0.0174 (11)0.0080 (13)
O50.0563 (13)0.1132 (18)0.0467 (13)0.0063 (12)0.0046 (10)0.0129 (12)
O60.0486 (12)0.0740 (13)0.0675 (13)0.0111 (10)0.0035 (10)0.0223 (11)
O70.0473 (13)0.0873 (16)0.1117 (18)0.0151 (11)0.0077 (12)0.0395 (14)
C10.0424 (15)0.0470 (15)0.0364 (15)0.0025 (12)0.0075 (12)0.0062 (12)
C20.0454 (17)0.0647 (18)0.0385 (15)0.0074 (13)0.0071 (12)0.0026 (13)
C30.0435 (17)0.0582 (18)0.0554 (18)0.0032 (13)0.0134 (14)0.0020 (14)
C40.0357 (16)0.0594 (18)0.063 (2)0.0001 (13)0.0054 (14)0.0121 (15)
C50.0465 (17)0.0618 (18)0.0420 (16)0.0082 (14)0.0012 (13)0.0121 (14)
C60.0499 (17)0.0563 (17)0.0401 (15)0.0040 (13)0.0115 (12)0.0045 (13)
C70.048 (2)0.112 (3)0.113 (3)0.0186 (19)0.0198 (19)0.015 (2)
C80.082 (3)0.164 (4)0.0388 (19)0.018 (3)0.0018 (17)0.002 (2)
C90.0458 (15)0.0515 (17)0.0330 (14)0.0086 (12)0.0087 (11)0.0017 (12)
C100.0473 (16)0.0425 (15)0.0390 (14)0.0046 (12)0.0088 (12)0.0056 (12)
C110.0418 (15)0.0383 (14)0.0344 (14)0.0009 (11)0.0085 (11)0.0027 (11)
C120.0531 (18)0.0550 (17)0.0382 (15)0.0012 (13)0.0117 (13)0.0125 (12)
C130.0498 (17)0.0625 (18)0.0327 (14)0.0009 (14)0.0013 (12)0.0105 (13)
C140.0421 (16)0.0511 (16)0.0390 (15)0.0038 (13)0.0045 (12)0.0009 (12)
C150.0498 (16)0.0415 (15)0.0400 (15)0.0042 (12)0.0122 (12)0.0036 (12)
C160.0448 (15)0.0334 (13)0.0307 (13)0.0007 (11)0.0068 (11)0.0011 (11)
C170.071 (2)0.120 (3)0.089 (3)0.044 (2)0.003 (2)0.019 (2)
C180.0431 (15)0.0388 (14)0.0328 (13)0.0007 (12)0.0082 (11)0.0053 (11)
C190.0404 (15)0.0379 (14)0.0282 (12)0.0032 (11)0.0072 (10)0.0061 (10)
C200.0404 (15)0.0489 (16)0.0409 (15)0.0031 (12)0.0092 (12)0.0021 (13)
C210.0434 (16)0.0453 (16)0.0362 (14)0.0059 (12)0.0058 (11)0.0015 (12)
C220.0548 (17)0.0397 (15)0.0389 (14)0.0023 (13)0.0123 (12)0.0010 (12)
C230.0420 (16)0.0516 (17)0.0494 (16)0.0037 (13)0.0099 (13)0.0021 (13)
C240.0404 (16)0.0497 (16)0.0438 (15)0.0031 (12)0.0065 (12)0.0046 (13)
C250.079 (2)0.073 (2)0.067 (2)0.0289 (18)0.0093 (17)0.0249 (18)
C260.077 (3)0.133 (4)0.201 (5)0.039 (3)0.011 (3)0.097 (4)
Geometric parameters (Å, º) top
O1—C91.439 (3)C10—H10A0.9700
O1—H10.8200C10—H10B0.9700
O2—C181.424 (3)C11—C161.398 (3)
O2—H20.8200C11—C121.398 (3)
O3—C141.367 (3)C12—C131.367 (3)
O3—C171.424 (4)C12—H120.9300
O4—C31.370 (3)C13—C141.382 (3)
O4—C71.423 (3)C13—H130.9300
O5—C51.378 (3)C14—C151.384 (3)
O5—C81.420 (4)C15—C161.393 (3)
O6—C211.371 (3)C15—H150.9300
O6—C251.418 (3)C16—C181.528 (3)
O7—C231.370 (3)C17—H17A0.9600
O7—C261.400 (4)C17—H17B0.9600
C1—C21.373 (3)C17—H17C0.9600
C1—C61.397 (3)C18—C191.524 (3)
C1—C91.507 (3)C18—H180.9800
C2—C31.391 (4)C19—C201.374 (3)
C2—H2A0.9300C19—C241.388 (3)
C3—C41.375 (4)C20—C211.393 (3)
C4—C51.387 (4)C20—H200.9300
C4—H40.9300C21—C221.380 (3)
C5—C61.377 (4)C22—C231.376 (3)
C6—H60.9300C22—H220.9300
C7—H7A0.9600C23—C241.386 (3)
C7—H7B0.9600C24—H240.9300
C7—H7C0.9600C25—H25A0.9600
C8—H8A0.9600C25—H25B0.9600
C8—H8B0.9600C25—H25C0.9600
C8—H8C0.9600C26—H26A0.9600
C9—C101.532 (3)C26—H26B0.9600
C9—H90.9800C26—H26C0.9600
C10—C111.509 (3)
C9—O1—H1109.5C12—C13—C14119.8 (2)
C18—O2—H2109.5C12—C13—H13120.1
C14—O3—C17118.0 (2)C14—C13—H13120.1
C3—O4—C7118.5 (2)O3—C14—C13115.9 (2)
C5—O5—C8118.1 (2)O3—C14—C15124.8 (2)
C21—O6—C25118.3 (2)C13—C14—C15119.3 (2)
C23—O7—C26119.4 (2)C14—C15—C16121.1 (2)
C2—C1—C6120.0 (2)C14—C15—H15119.5
C2—C1—C9121.1 (2)C16—C15—H15119.5
C6—C1—C9118.8 (2)C15—C16—C11119.9 (2)
C1—C2—C3120.0 (2)C15—C16—C18117.1 (2)
C1—C2—H2A120.0C11—C16—C18123.0 (2)
C3—C2—H2A120.0O3—C17—H17A109.5
O4—C3—C4124.3 (3)O3—C17—H17B109.5
O4—C3—C2115.0 (2)H17A—C17—H17B109.5
C4—C3—C2120.7 (3)O3—C17—H17C109.5
C3—C4—C5118.6 (3)H17A—C17—H17C109.5
C3—C4—H4120.7H17B—C17—H17C109.5
C5—C4—H4120.7O2—C18—C19112.09 (19)
C6—C5—O5123.5 (3)O2—C18—C16109.72 (19)
C6—C5—C4121.6 (2)C19—C18—C16110.99 (18)
O5—C5—C4114.9 (2)O2—C18—H18108.0
C5—C6—C1118.9 (2)C19—C18—H18108.0
C5—C6—H6120.5C16—C18—H18108.0
C1—C6—H6120.5C20—C19—C24118.8 (2)
O4—C7—H7A109.5C20—C19—C18122.6 (2)
O4—C7—H7B109.5C24—C19—C18118.6 (2)
H7A—C7—H7B109.5C19—C20—C21120.5 (2)
O4—C7—H7C109.5C19—C20—H20119.8
H7A—C7—H7C109.5C21—C20—H20119.8
H7B—C7—H7C109.5O6—C21—C22123.8 (2)
O5—C8—H8A109.5O6—C21—C20115.2 (2)
O5—C8—H8B109.5C22—C21—C20121.0 (2)
H8A—C8—H8B109.5C23—C22—C21118.0 (2)
O5—C8—H8C109.5C23—C22—H22121.0
H8A—C8—H8C109.5C21—C22—H22121.0
H8B—C8—H8C109.5O7—C23—C22123.6 (2)
O1—C9—C1110.3 (2)O7—C23—C24114.8 (2)
O1—C9—C10111.71 (19)C22—C23—C24121.6 (2)
C1—C9—C10111.9 (2)C23—C24—C19120.0 (2)
O1—C9—H9107.6C23—C24—H24120.0
C1—C9—H9107.6C19—C24—H24120.0
C10—C9—H9107.6O6—C25—H25A109.5
C11—C10—C9113.8 (2)O6—C25—H25B109.5
C11—C10—H10A108.8H25A—C25—H25B109.5
C9—C10—H10A108.8O6—C25—H25C109.5
C11—C10—H10B108.8H25A—C25—H25C109.5
C9—C10—H10B108.8H25B—C25—H25C109.5
H10A—C10—H10B107.7O7—C26—H26A109.5
C16—C11—C12117.5 (2)O7—C26—H26B109.5
C16—C11—C10124.3 (2)H26A—C26—H26B109.5
C12—C11—C10118.1 (2)O7—C26—H26C109.5
C13—C12—C11122.4 (2)H26A—C26—H26C109.5
C13—C12—H12118.8H26B—C26—H26C109.5
C11—C12—H12118.8
C6—C1—C2—C30.4 (4)C13—C14—C15—C160.6 (4)
C9—C1—C2—C3179.9 (2)C14—C15—C16—C111.5 (4)
C7—O4—C3—C43.0 (4)C14—C15—C16—C18175.7 (2)
C7—O4—C3—C2176.7 (3)C12—C11—C16—C151.0 (3)
C1—C2—C3—O4179.1 (2)C10—C11—C16—C15178.0 (2)
C1—C2—C3—C40.6 (4)C12—C11—C16—C18176.0 (2)
O4—C3—C4—C5179.8 (3)C10—C11—C16—C185.0 (4)
C2—C3—C4—C50.5 (4)C15—C16—C18—O2132.8 (2)
C8—O5—C5—C65.0 (4)C11—C16—C18—O250.1 (3)
C8—O5—C5—C4175.6 (3)C15—C16—C18—C19102.8 (2)
C3—C4—C5—C61.8 (4)C11—C16—C18—C1974.3 (3)
C3—C4—C5—O5178.8 (2)O2—C18—C19—C200.8 (3)
O5—C5—C6—C1178.7 (2)C16—C18—C19—C20122.2 (2)
C4—C5—C6—C12.0 (4)O2—C18—C19—C24179.41 (19)
C2—C1—C6—C50.9 (4)C16—C18—C19—C2457.5 (3)
C9—C1—C6—C5178.8 (2)C24—C19—C20—C212.0 (3)
C2—C1—C9—O1123.5 (2)C18—C19—C20—C21177.8 (2)
C6—C1—C9—O156.8 (3)C25—O6—C21—C221.0 (4)
C2—C1—C9—C10111.5 (3)C25—O6—C21—C20178.4 (2)
C6—C1—C9—C1068.2 (3)C19—C20—C21—O6179.2 (2)
O1—C9—C10—C1150.2 (3)C19—C20—C21—C220.2 (4)
C1—C9—C10—C11174.5 (2)O6—C21—C22—C23177.2 (2)
C9—C10—C11—C1698.3 (3)C20—C21—C22—C232.2 (3)
C9—C10—C11—C1280.7 (3)C26—O7—C23—C222.3 (5)
C16—C11—C12—C130.3 (4)C26—O7—C23—C24178.6 (3)
C10—C11—C12—C13179.3 (2)C21—C22—C23—O7178.9 (2)
C11—C12—C13—C141.1 (4)C21—C22—C23—C242.0 (4)
C17—O3—C14—C13176.1 (3)O7—C23—C24—C19178.9 (2)
C17—O3—C14—C154.4 (4)C22—C23—C24—C190.2 (4)
C12—C13—C14—O3178.9 (2)C20—C19—C24—C232.2 (3)
C12—C13—C14—C150.6 (4)C18—C19—C24—C23177.5 (2)
O3—C14—C15—C16179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.822.631 (3)168
O2—H2···O1i0.821.782.593 (2)169
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H30O7
Mr454.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.382 (9), 23.700 (15), 8.664 (6)
β (°) 104.313 (12)
V3)2464 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.965, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
10041, 4346, 2601
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.138, 1.05
No. of reflections4346
No. of parameters305
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997) and SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
C1—C91.507 (3)C10—C111.509 (3)
C9—C101.532 (3)
C1—C9—C10—C11174.5 (2)C16—C18—C19—C20122.2 (2)
C9—C10—C11—C1698.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.822.631 (3)168
O2—H2···O1i0.821.782.593 (2)169
Symmetry code: (i) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds