Download citation
Download citation
link to html
In the title compound, C20H12N2, the bond lengths in the cyclo­propane ring are 1.526, 1.532 and 1.541 (2) Å. The mol­ecules are linked by two C—H...N contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803000941/bt6226sup1.cif
Contains datablocks 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803000941/bt62262sup2.hkl
Contains datablock 2

CCDC reference: 204693

Key indicators

  • Single-crystal X-ray study
  • T = 178 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.040
  • wR factor = 0.111
  • Data-to-parameter ratio = 12.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Prebullvalene, bicyclo[4.2.2]deca-2,4,7,9-tetraene, is a (CH)10 hydrocarbon whose photoisomerization behaviour has been investigated (for a review see Scott & Jones, 1972). Our studies of the addition of cyanoacetylene to aromatic compounds (Hopf & Witulski, 1995) furnished us with the dibenzoprebullvalenedicarbonitrile, (1), and we have investigated its photochemical behaviour in acetone solution with light of wavelength > 300 nm. The photoisomerization yielded the title compound (2), and we here present its crystal structure.

Whereas the parent hydrocarbon prebullvalene isomerizes to bullvalene when irradiated (Scott & Jones, 1972; Jones & Scott, 1967), the photorearrangement of (1) takes a completely different course. To rationalize the formation of (2), we propose that the process is initiated by a [1,3] carbon shift followed by a di-π-methane rearrangement.

The structure of (2) is shown in Fig. 1. Molecular dimensions are normal. Bond lengths in the cyclopropane ring (Table 1) are somewhat greater than the average value of 1.509 Å e stablished by Allen (1980); see also Rozsondai (1995).

The molecules are linked to form columns parallel to the x axis by two C—H···N interactions (Fig. 2 and Table 2).

Experimental top

Compound (1) was irradiated for 4 h at room temperature using a 450 W mercury high-pressure lamp, forming (2) in 65% yield (Witulski, 1992). The product was crystallized from chloroform/pentane.

Refinement top

H atoms were included using a riding model with fixed C—H bond lengths (sp2-C—H = 0.95 Å and methine = 1.00 Å); Usio(H) values were fixed at 1.2Ueq of the parent atom.

Computing details top

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of compound (2) in the crystal. Ellipsoids represent 30% probability levels and H-atom radii are arbitrary.
[Figure 2] Fig. 2. The packing of compound (2) in the crystal. Dashed lines indicate hydrogen bonds; only those H atoms participating in hydrogen bonds are included. The view direction is perpendicular to the xy plane.
9,10-Dicyano-dibenzoisobullvalene top
Crystal data top
C20H12N2Z = 2
Mr = 280.32F(000) = 292
Triclinic, P1Dx = 1.286 Mg m3
a = 6.722 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.154 (3) ÅCell parameters from 50 reflections
c = 12.143 (4) Åθ = 10–12°
α = 96.85 (3)°µ = 0.08 mm1
β = 90.65 (3)°T = 178 K
γ = 102.51 (3)°Prism, colourless
V = 723.7 (5) Å30.7 × 0.4 × 0.2 mm
Data collection top
Nicolet R3
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 3.0°
Graphite monochromatorh = 72
ω scansk = 1010
3368 measured reflectionsl = 1414
2539 independent reflections3 standard reflections every 147 reflections
1923 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.0943P]
where P = (Fo2 + 2Fc2)/3
2539 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H12N2γ = 102.51 (3)°
Mr = 280.32V = 723.7 (5) Å3
Triclinic, P1Z = 2
a = 6.722 (3) ÅMo Kα radiation
b = 9.154 (3) ŵ = 0.08 mm1
c = 12.143 (4) ÅT = 178 K
α = 96.85 (3)°0.7 × 0.4 × 0.2 mm
β = 90.65 (3)°
Data collection top
Nicolet R3
diffractometer
Rint = 0.016
3368 measured reflections3 standard reflections every 147 reflections
2539 independent reflections intensity decay: none
1923 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
2539 reflectionsΔρmin = 0.19 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0414 (3)0.41201 (17)0.29653 (13)0.0338 (4)
H10.08580.44110.29400.041*
C20.0870 (3)0.36070 (18)0.38951 (13)0.0364 (4)
H20.01040.36310.44540.044*
C30.2631 (3)0.30107 (18)0.41978 (13)0.0346 (4)
C40.3735 (2)0.22503 (17)0.34350 (13)0.0312 (4)
C50.3123 (2)0.19330 (16)0.22141 (12)0.0282 (4)
H50.40950.13650.18410.034*
C60.0981 (2)0.10131 (16)0.19116 (12)0.0277 (4)
C70.0002 (2)0.16378 (16)0.11276 (12)0.0282 (4)
C80.1255 (2)0.31159 (16)0.09186 (12)0.0287 (4)
H80.12930.34360.01590.034*
C90.1645 (2)0.42951 (16)0.19593 (12)0.0288 (4)
C100.3209 (2)0.33435 (16)0.16302 (12)0.0277 (4)
C110.3204 (3)0.3167 (2)0.53256 (14)0.0497 (5)
H110.24540.36560.58540.060*
C120.4832 (3)0.2630 (2)0.56888 (16)0.0579 (6)
H120.51930.27520.64580.070*
C130.5929 (3)0.1917 (2)0.49344 (16)0.0532 (5)
H130.70620.15590.51800.064*
C140.5374 (3)0.1721 (2)0.38130 (14)0.0410 (4)
H140.61270.12180.32960.049*
C150.0033 (3)0.03372 (17)0.22732 (13)0.0337 (4)
H150.06810.07560.28190.040*
C160.1880 (3)0.10647 (18)0.18220 (14)0.0385 (4)
H160.25430.19950.20570.046*
C170.2840 (3)0.04492 (18)0.10301 (14)0.0380 (4)
H170.41470.09670.07270.046*
C180.1908 (2)0.09185 (17)0.06762 (13)0.0333 (4)
H180.25650.13460.01390.040*
C190.2195 (2)0.58454 (18)0.17152 (13)0.0332 (4)
C200.5186 (3)0.41121 (17)0.13149 (12)0.0309 (4)
N10.2657 (2)0.70710 (16)0.15399 (12)0.0446 (4)
N20.6789 (2)0.47187 (17)0.11101 (12)0.0433 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0304 (9)0.0312 (8)0.0382 (9)0.0059 (7)0.0046 (7)0.0010 (7)
C20.0378 (10)0.0349 (9)0.0324 (9)0.0015 (7)0.0099 (7)0.0015 (7)
C30.0370 (10)0.0337 (9)0.0288 (8)0.0030 (7)0.0015 (7)0.0066 (6)
C40.0305 (9)0.0298 (8)0.0310 (8)0.0018 (7)0.0000 (7)0.0102 (6)
C50.0297 (8)0.0279 (8)0.0285 (8)0.0083 (6)0.0048 (6)0.0065 (6)
C60.0311 (9)0.0257 (7)0.0259 (7)0.0066 (6)0.0039 (6)0.0010 (6)
C70.0308 (9)0.0270 (8)0.0260 (7)0.0059 (7)0.0036 (6)0.0008 (6)
C80.0292 (9)0.0294 (8)0.0271 (7)0.0054 (7)0.0001 (6)0.0045 (6)
C90.0297 (9)0.0260 (8)0.0306 (8)0.0059 (6)0.0001 (7)0.0035 (6)
C100.0278 (8)0.0292 (8)0.0262 (7)0.0050 (6)0.0028 (6)0.0052 (6)
C110.0585 (13)0.0556 (11)0.0282 (9)0.0022 (10)0.0025 (9)0.0049 (8)
C120.0580 (13)0.0729 (14)0.0339 (10)0.0121 (11)0.0128 (10)0.0206 (9)
C130.0402 (11)0.0667 (13)0.0515 (12)0.0032 (10)0.0104 (9)0.0314 (10)
C140.0337 (10)0.0465 (10)0.0437 (10)0.0032 (8)0.0014 (8)0.0202 (8)
C150.0433 (10)0.0284 (8)0.0298 (8)0.0085 (7)0.0047 (7)0.0045 (6)
C160.0444 (10)0.0264 (8)0.0406 (9)0.0010 (7)0.0088 (8)0.0032 (7)
C170.0336 (9)0.0349 (9)0.0397 (9)0.0005 (7)0.0010 (8)0.0034 (7)
C180.0330 (9)0.0332 (8)0.0324 (8)0.0064 (7)0.0014 (7)0.0003 (7)
C190.0338 (9)0.0328 (9)0.0328 (8)0.0074 (7)0.0027 (7)0.0038 (7)
C200.0322 (9)0.0334 (8)0.0282 (8)0.0070 (7)0.0006 (7)0.0090 (6)
N10.0494 (10)0.0327 (8)0.0518 (9)0.0073 (7)0.0016 (7)0.0090 (7)
N20.0345 (9)0.0474 (9)0.0488 (9)0.0047 (7)0.0053 (7)0.0175 (7)
Geometric parameters (Å, º) top
C1—C21.331 (2)C9—C191.454 (2)
C1—C91.488 (2)C9—C101.532 (2)
C1—H10.9500C10—C201.442 (2)
C2—C31.467 (3)C11—C121.381 (3)
C2—H20.9500C11—H110.9500
C3—C111.401 (2)C12—C131.375 (3)
C3—C41.407 (2)C12—H120.9500
C4—C141.390 (2)C13—C141.388 (3)
C4—C51.511 (2)C13—H130.9500
C5—C61.519 (2)C14—H140.9500
C5—C101.536 (2)C15—C161.387 (2)
C5—H51.0000C15—H150.9500
C6—C151.386 (2)C16—C171.390 (2)
C6—C71.395 (2)C16—H160.9500
C7—C181.383 (2)C17—C181.393 (2)
C7—C81.482 (2)C17—H170.9500
C8—C101.526 (2)C18—H180.9500
C8—C91.541 (2)C19—N11.144 (2)
C8—H81.0000C20—N21.145 (2)
C2—C1—C9128.14 (16)C1—C9—C8122.47 (13)
C2—C1—H1115.9C10—C9—C859.54 (10)
C9—C1—H1115.9C20—C10—C8124.02 (13)
C1—C2—C3130.54 (16)C20—C10—C9117.86 (13)
C1—C2—H2114.7C8—C10—C960.54 (10)
C3—C2—H2114.7C20—C10—C5116.99 (13)
C11—C3—C4118.02 (17)C8—C10—C5108.49 (13)
C11—C3—C2117.62 (16)C9—C10—C5116.98 (12)
C4—C3—C2124.32 (15)C12—C11—C3121.67 (19)
C14—C4—C3119.60 (15)C12—C11—H11119.2
C14—C4—C5118.91 (15)C3—C11—H11119.2
C3—C4—C5121.43 (15)C13—C12—C11119.87 (17)
C4—C5—C6116.61 (13)C13—C12—H12120.1
C4—C5—C10114.76 (12)C11—C12—H12120.1
C6—C5—C10102.94 (12)C12—C13—C14119.74 (19)
C4—C5—H5107.3C12—C13—H13120.1
C6—C5—H5107.3C14—C13—H13120.1
C10—C5—H5107.3C13—C14—C4121.07 (19)
C15—C6—C7120.35 (15)C13—C14—H14119.5
C15—C6—C5127.79 (14)C4—C14—H14119.5
C7—C6—C5111.76 (13)C6—C15—C16118.67 (15)
C18—C7—C6121.22 (14)C6—C15—H15120.7
C18—C7—C8128.14 (14)C16—C15—H15120.7
C6—C7—C8110.61 (14)C15—C16—C17120.83 (15)
C7—C8—C10105.60 (12)C15—C16—H16119.6
C7—C8—C9113.32 (12)C17—C16—H16119.6
C10—C8—C959.92 (10)C16—C17—C18120.73 (16)
C7—C8—H8120.8C16—C17—H17119.6
C10—C8—H8120.8C18—C17—H17119.6
C9—C8—H8120.8C7—C18—C17118.19 (15)
C19—C9—C1113.08 (13)C7—C18—H18120.9
C19—C9—C10114.98 (13)C17—C18—H18120.9
C1—C9—C10122.88 (13)N1—C19—C9178.63 (17)
C19—C9—C8113.88 (13)N2—C20—C10176.98 (16)
C9—C1—C2—C32.8 (3)C9—C8—C10—C20105.44 (16)
C1—C2—C3—C11152.47 (18)C7—C8—C10—C9108.25 (13)
C1—C2—C3—C429.7 (3)C7—C8—C10—C52.87 (15)
C11—C3—C4—C141.8 (2)C9—C8—C10—C5111.13 (13)
C2—C3—C4—C14179.55 (15)C19—C9—C10—C2011.23 (19)
C11—C3—C4—C5175.52 (14)C1—C9—C10—C20133.46 (15)
C2—C3—C4—C52.3 (2)C8—C9—C10—C20115.36 (15)
C14—C4—C5—C6119.09 (16)C19—C9—C10—C8104.13 (15)
C3—C4—C5—C658.22 (19)C1—C9—C10—C8111.19 (16)
C14—C4—C5—C10120.45 (16)C19—C9—C10—C5158.91 (13)
C3—C4—C5—C1062.23 (19)C1—C9—C10—C514.2 (2)
C4—C5—C6—C1549.2 (2)C8—C9—C10—C596.96 (15)
C10—C5—C6—C15175.76 (14)C4—C5—C10—C2079.58 (17)
C4—C5—C6—C7134.56 (14)C6—C5—C10—C20152.68 (13)
C10—C5—C6—C77.99 (16)C4—C5—C10—C8134.07 (14)
C15—C6—C7—C181.3 (2)C6—C5—C10—C86.33 (15)
C5—C6—C7—C18175.23 (13)C4—C5—C10—C968.39 (18)
C15—C6—C7—C8176.80 (13)C6—C5—C10—C959.35 (16)
C5—C6—C7—C86.64 (17)C4—C3—C11—C121.6 (3)
C18—C7—C8—C10179.81 (14)C2—C3—C11—C12179.48 (16)
C6—C7—C8—C102.22 (16)C3—C11—C12—C130.2 (3)
C18—C7—C8—C9116.69 (17)C11—C12—C13—C141.0 (3)
C6—C7—C8—C961.28 (17)C12—C13—C14—C40.7 (3)
C2—C1—C9—C19119.42 (18)C3—C4—C14—C130.7 (2)
C2—C1—C9—C1025.9 (2)C5—C4—C14—C13176.68 (15)
C2—C1—C9—C898.1 (2)C7—C6—C15—C161.4 (2)
C7—C8—C9—C19158.92 (13)C5—C6—C15—C16174.56 (14)
C10—C8—C9—C19105.99 (15)C6—C15—C16—C170.5 (2)
C7—C8—C9—C116.8 (2)C15—C16—C17—C180.4 (2)
C10—C8—C9—C1111.85 (16)C6—C7—C18—C170.4 (2)
C7—C8—C9—C1095.09 (14)C8—C7—C18—C17177.42 (14)
C7—C8—C10—C20146.31 (14)C16—C17—C18—C70.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···N1i0.952.653.526 (2)154
C8—H8···N2ii1.002.573.440 (2)145
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H12N2
Mr280.32
Crystal system, space groupTriclinic, P1
Temperature (K)178
a, b, c (Å)6.722 (3), 9.154 (3), 12.143 (4)
α, β, γ (°)96.85 (3), 90.65 (3), 102.51 (3)
V3)723.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.7 × 0.4 × 0.2
Data collection
DiffractometerNicolet R3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3368, 2539, 1923
Rint0.016
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.03
No. of reflections2539
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: P3 (Nicolet, 1987), P3, XDISK (Nicolet, 1987), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
C8—C101.526 (2)C9—C101.532 (2)
C8—C91.541 (2)
C10—C8—C959.92 (10)C8—C10—C960.54 (10)
C10—C9—C859.54 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···N1i0.952.653.526 (2)154
C8—H8···N2ii1.002.573.440 (2)145
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds