Download citation
Download citation
link to html
The structure of the title compound, [Zr(C8H13O3)4], an MOCVD precursor, has been determined. The zirconium coordination geometry is dodecahedral and the chelate rings are significantly non-planar. The Zr atom lies on a \overline 4 axis, so the asymmetric unit contains only one ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803002046/cf6235sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803002046/cf6235Isup2.hkl
Contains datablock I

CCDC reference: 204664

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.047
  • wR factor = 0.102
  • Data-to-parameter ratio = 19.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.122
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The structure of the title zirconium complex, (I), an MOCVD precursor, has been determined. The molecular fourfold inversion symmetry (4) is retained in the crystal structure, with the Zr atom occupying a special position. The coordination geometry is dodecahedral (Hoard & Silverton, 1963) and not a square antiprism, as in tetrakis(acetylacetonato)zirconium(IV) (Clegg, 1987; Silverton & Hoard, 1963). The ligand has tert-butoxy as a substituent on one side and methyl on the other, as in the Fe complex, also an MOCVD precursor, reported by us previously (Urs et al., 2000). The ligand bite O···O distance is 2.703 (2) Å. The six-membered chelate ring is significantly non-planar, the angle between the Zr1/O1/O2 and C1/C2/C3 planes being 3.8 (2)° (Nardelli, 1995). The packing is essentially by van der Waals interactions. There are two intramolecular short contacts of the C—H···O type involving the tert-butyl atoms C6 and C7, and the chelate ring atom O2, with C···O distances of 2.999 (3) and 2.906 (4) Å, and angles at H of 114.2 (2) and 116.6 (2)°, respectively.

Experimental top

The title compound was synthesized by refluxing zirconium n-propoxide with tert-butyl 3-oxobutanoate in dry benzene, under flowing dry nitrogen. 10 mmol (2.31 g) of zirconium n-propoxide was placed in a three-necked round-bottomed flask connected to the dry nitrogen gas line. 40 mmol (6.12 g) of tert-butyl 3-oxobutanoate was added, using a pressure equalizer fitted to one of the necks. A reflux condenser fitted with calcium chloride guard tube was fitted to the third neck, to ensure that the system was moisture-free. The reaction mixture was refluxed for 3 h-. The propanol-benzene mixture and the excess solvent were removed by distillation. The residue (4.42 g, 85%) was recrystallized from hot n-hexane.

Refinement top

H atoms were located in the difference Fourier maps, then positioned geometrically and allowed to ride on their respective parent atoms. [Please check this added text]

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity and only the atoms of the asymmetric unit are labelled.
[Figure 2] Fig. 2. Packing of the molecules, viewed down the c axis.
tetrakis(tert-butyl-3-oxobutanoato)zirconium(IV) top
Crystal data top
[Zr(C8H13O3)4]Dx = 1.282 Mg m3
Mr = 719.96Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 19762 reflections
Hall symbol: -I 4 a dθ = 2.2–27.5°
a = 18.569 (4) ŵ = 0.35 mm1
c = 10.818 (3) ÅT = 293 K
V = 3730.2 (16) Å3Prism, colourless
Z = 40.19 × 0.13 × 0.05 mm
F(000) = 1520
Data collection top
Bruker SMART CCD area-detector
diffractometer
2111 independent reflections
Radiation source: fine-focus sealed tube1491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.122
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2324
Tmin = 0.84, Tmax = 0.98k = 2322
19762 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
2111 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Zr(C8H13O3)4]Z = 4
Mr = 719.96Mo Kα radiation
Tetragonal, I41/aµ = 0.35 mm1
a = 18.569 (4) ÅT = 293 K
c = 10.818 (3) Å0.19 × 0.13 × 0.05 mm
V = 3730.2 (16) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2111 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1491 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.98Rint = 0.122
19762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.00Δρmax = 0.44 e Å3
2111 reflectionsΔρmin = 0.20 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.50.250.8750.04925 (18)
C20.64288 (12)0.23444 (13)1.1037 (2)0.0560 (6)
H20.68050.22991.160.067*
O10.58487 (8)0.18326 (8)0.93303 (14)0.0582 (4)
C30.63292 (12)0.18194 (12)1.0182 (2)0.0539 (6)
C40.67992 (16)0.11612 (14)1.0194 (3)0.0793 (8)
H4A0.65110.07451.03730.119*
H4B0.71630.12141.08170.119*
H4C0.70230.11050.94010.119*
O20.54445 (9)0.30685 (8)1.04535 (13)0.0574 (4)
O30.61859 (8)0.34273 (8)1.19704 (14)0.0586 (4)
C10.59793 (13)0.29600 (12)1.11038 (18)0.0502 (5)
C50.57846 (14)0.40956 (13)1.2219 (2)0.0609 (6)
C60.50571 (16)0.39087 (17)1.2726 (3)0.0855 (9)
H6A0.47630.37141.20780.128*
H6B0.48340.43341.30530.128*
H6C0.51090.35581.33720.128*
C70.5760 (2)0.45555 (17)1.1094 (3)0.1054 (12)
H7A0.62370.46121.0770.158*
H7B0.55670.50191.13040.158*
H7C0.54590.43321.04830.158*
C80.62509 (18)0.44386 (16)1.3217 (3)0.0931 (10)
H8A0.62750.41241.3920.14*
H8B0.60450.48911.3460.14*
H8C0.67270.45171.28990.14*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0524 (2)0.0524 (2)0.0430 (2)000
C20.0499 (13)0.0525 (14)0.0655 (14)0.0019 (11)0.0056 (11)0.0013 (11)
O10.0620 (10)0.0578 (10)0.0549 (9)0.0082 (8)0.0017 (8)0.0054 (7)
C30.0484 (13)0.0510 (14)0.0624 (13)0.0007 (11)0.0061 (11)0.0024 (11)
C40.0780 (19)0.0610 (16)0.099 (2)0.0158 (14)0.0093 (16)0.0101 (15)
O20.0651 (10)0.0569 (10)0.0502 (9)0.0101 (8)0.0069 (8)0.0049 (7)
O30.0588 (10)0.0527 (9)0.0642 (10)0.0028 (8)0.0073 (8)0.0113 (7)
C10.0553 (14)0.0507 (13)0.0445 (11)0.0048 (10)0.0035 (10)0.0022 (9)
C50.0659 (15)0.0498 (14)0.0669 (14)0.0021 (12)0.0010 (12)0.0100 (11)
C60.0723 (19)0.093 (2)0.091 (2)0.0030 (16)0.0092 (15)0.0260 (17)
C70.161 (4)0.0560 (18)0.099 (2)0.012 (2)0.004 (2)0.0110 (16)
C80.091 (2)0.074 (2)0.115 (2)0.0034 (17)0.0229 (19)0.0367 (18)
Geometric parameters (Å, º) top
Zr1—O1i2.1008 (16)C2—C11.417 (3)
Zr1—O1ii2.1008 (16)O1—C31.283 (3)
Zr1—O1iii2.1008 (16)C3—C41.502 (3)
Zr1—O12.1008 (16)O2—C11.234 (3)
Zr1—O22.2786 (16)O3—C11.334 (3)
Zr1—O2ii2.2786 (15)O3—C51.472 (3)
Zr1—O2iii2.2786 (15)C5—C71.487 (4)
Zr1—O2i2.2786 (15)C5—C61.499 (4)
C2—C31.357 (3)C5—C81.523 (4)
O1i—Zr1—O1ii95.12 (2)O1ii—Zr1—O2i143.41 (6)
O1i—Zr1—O1iii95.12 (2)O1iii—Zr1—O2i71.36 (6)
O1ii—Zr1—O1iii145.23 (8)O1—Zr1—O2i75.92 (6)
O1i—Zr1—O1145.23 (8)O2—Zr1—O2i72.05 (8)
O1ii—Zr1—O195.12 (2)O2ii—Zr1—O2i130.85 (5)
O1iii—Zr1—O195.12 (2)O2iii—Zr1—O2i130.85 (5)
O1i—Zr1—O275.92 (6)C3—C2—C1122.3 (2)
O1ii—Zr1—O271.36 (6)C3—O1—Zr1138.39 (15)
O1iii—Zr1—O2143.41 (6)O1—C3—C2124.8 (2)
O1—Zr1—O276.11 (6)O1—C3—C4115.2 (2)
O1i—Zr1—O2ii71.36 (6)C2—C3—C4120.0 (2)
O1ii—Zr1—O2ii76.11 (6)C1—O2—Zr1132.62 (14)
O1iii—Zr1—O2ii75.92 (6)C1—O3—C5122.09 (18)
O1—Zr1—O2ii143.41 (6)O2—C1—O3121.7 (2)
O2—Zr1—O2ii130.85 (5)O2—C1—C2125.2 (2)
O1i—Zr1—O2iii143.41 (6)O3—C1—C2113.0 (2)
O1ii—Zr1—O2iii75.92 (6)O3—C5—C7110.5 (2)
O1iii—Zr1—O2iii76.11 (6)O3—C5—C6109.1 (2)
O1—Zr1—O2iii71.36 (6)C7—C5—C6113.8 (3)
O2—Zr1—O2iii130.85 (5)O3—C5—C8101.20 (19)
O2ii—Zr1—O2iii72.05 (8)C7—C5—C8110.9 (3)
O1i—Zr1—O2i76.11 (6)C6—C5—C8110.5 (2)
O1i—Zr1—O1—C338.7 (2)O1—Zr1—O2—C17.6 (2)
O1ii—Zr1—O1—C367.96 (19)O2ii—Zr1—O2—C1144.0 (2)
O1iii—Zr1—O1—C3145.3 (2)O2iii—Zr1—O2—C141.96 (19)
O2—Zr1—O1—C31.4 (2)O2i—Zr1—O2—C187.0 (2)
O2ii—Zr1—O1—C3141.5 (2)Zr1—O2—C1—O3170.86 (13)
O2iii—Zr1—O1—C3141.2 (2)Zr1—O2—C1—C29.9 (3)
O2i—Zr1—O1—C376.0 (2)C5—O3—C1—O20.9 (3)
Zr1—O1—C3—C22.6 (4)C5—O3—C1—C2178.42 (19)
Zr1—O1—C3—C4177.14 (17)C3—C2—C1—O23.6 (4)
C1—C2—C3—O12.7 (4)C3—C2—C1—O3177.1 (2)
C1—C2—C3—C4177.0 (2)C1—O3—C5—C760.0 (3)
O1i—Zr1—O2—C1166.7 (2)C1—O3—C5—C665.9 (3)
O1ii—Zr1—O2—C192.8 (2)C1—O3—C5—C8177.6 (2)
O1iii—Zr1—O2—C187.3 (2)
Symmetry codes: (i) x+1, y+1/2, z; (ii) y+3/4, x1/4, z+7/4; (iii) y+1/4, x+3/4, z+7/4.

Experimental details

Crystal data
Chemical formula[Zr(C8H13O3)4]
Mr719.96
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)18.569 (4), 10.818 (3)
V3)3730.2 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.19 × 0.13 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.84, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
19762, 2111, 1491
Rint0.122
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.102, 1.00
No. of reflections2111
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.20

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zr1—O12.1008 (16)C2—C11.417 (3)
Zr1—O22.2786 (16)O1—C31.283 (3)
C2—C31.357 (3)O2—C11.234 (3)
O1i—Zr1—O271.36 (6)O1—C3—C2124.8 (2)
C3—C2—C1122.3 (2)O1—C3—C4115.2 (2)
C3—O1—Zr1138.39 (15)C2—C3—C4120.0 (2)
O2—Zr1—O1—C31.4 (2)O1—Zr1—O2—C17.6 (2)
Zr1—O1—C3—C22.6 (4)Zr1—O2—C1—C29.9 (3)
C1—C2—C3—O12.7 (4)C3—C2—C1—O23.6 (4)
Symmetry code: (i) y+3/4, x1/4, z+7/4.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds