Download citation
Download citation
link to html
In the title compound, C9H8BrN3O, the dihedral angle between the phenyl and triazole rings is 8.93 (14)°. In the crystal, the mol­ecules exist as centrosymmetrically related N—H...O hydrogen-bonded dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803001363/cv6165sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803001363/cv6165Isup2.hkl
Contains datablock I

CCDC reference: 204713

Key indicators

  • Single-crystal X-ray study
  • T = 160 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.092
  • Data-to-parameter ratio = 20.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

1,2,4-Triazole derivatives are found to be associated with diverse pharmacological activities, such as analgesic, anti-asthmatic, diuretic, antifungal, antibacterial, pesticidal and anti-inflammatory activities (Thamotharan et al., 2003, and references therein). Triazole derivatives have been synthesized as possible anticonvulsants, antidepressants, tranquilizers and plant-growth regulators (Bradbury & Rivett, 1991; Hirota et al., 1991; Walser et al., 1991). In view of this, the crystal structure determination of the title triazole derivative, (I), has been carried out in order to elucidate the molecular conformation.

The bond lengths and angles in (I) are unexceptional and comparable with those reported for related structures (Chen et al., 1998; Wang et al., 1998; Thamotharan et al., 2003). The phenyl ring is oriented at an angle of 8.93 (14)° with respect to the plane of the triazole ring, compared with a value of 30.63 (9)° reported for our previous chloro derivative of triazole (Thamotharan et al., 2003). In the crystal, centrosymmetrically related molecules form dimeric pairs through N—H···O intermolecular hydrogen bonds and have a graph set motif of R22(8) (Bernstein et al., 1995).

Experimental top

The title compound was prepared by refluxing 2-(4-bromophenyl)-5-methyl-1,3,4-oxadiazolin-2-one with formamide. The solid obtained, (I), was crystallized from benzene (m.p. 503 K).

Refinement top

The position of the amine H atom was determined from a difference Fourier map and refined freely along with its isotropic displacement parameter. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å), with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the parent C—C bond. All remaining H atoms were placed in geometrically idealized positions (C—H = 0.95–0.99 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Version 1.07; Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2002).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the unit cell.
2-(4-Bromophenyl)-5-methyl-2,3-dihydro-4H-1,2,4-triazol-3-one top
Crystal data top
C9H8BrN3OF(000) = 504
Mr = 254.09Dx = 1.825 Mg m3
Monoclinic, P21/cMelting point: 503 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.0333 (1) ÅCell parameters from 26468 reflections
b = 10.8622 (2) Åθ = 2.0–30.0°
c = 21.1608 (4) ŵ = 4.41 mm1
β = 93.9045 (7)°T = 160 K
V = 924.91 (3) Å3Needle, colourless
Z = 40.25 × 0.08 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
2710 independent reflections
Radiation source: Nonius FR590 sealed tube generator2239 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.087
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 2.1°
ϕ and ω scans with κ offsetsh = 55
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1515
Tmin = 0.550, Tmax = 0.818l = 2929
22923 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom & difmap
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.9447P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2710 reflectionsΔρmax = 0.35 e Å3
133 parametersΔρmin = 0.75 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (11)
Crystal data top
C9H8BrN3OV = 924.91 (3) Å3
Mr = 254.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.0333 (1) ŵ = 4.41 mm1
b = 10.8622 (2) ÅT = 160 K
c = 21.1608 (4) Å0.25 × 0.08 × 0.05 mm
β = 93.9045 (7)°
Data collection top
Nonius KappaCCD
diffractometer
2710 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2239 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.818Rint = 0.087
22923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.35 e Å3
2710 reflectionsΔρmin = 0.75 e Å3
133 parameters
Special details top

Experimental. Solvent used: Benzene Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.601 (1) Frames collected: 578 Seconds exposure per frame: 52 Degrees rotation per frame: 1.3 Crystal-Detector distance (mm): 32.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.47845 (7)0.43164 (3)0.247065 (13)0.03786 (12)
O30.3515 (5)0.90921 (16)0.07107 (8)0.0317 (4)
N10.0777 (5)0.7294 (2)0.03332 (10)0.0293 (4)
N20.0216 (5)0.75724 (19)0.02714 (9)0.0257 (4)
N40.2445 (5)0.89435 (19)0.03592 (10)0.0268 (4)
H40.364 (8)0.951 (3)0.0503 (14)0.029 (8)*
C30.2218 (6)0.8594 (2)0.02653 (11)0.0257 (5)
C50.0631 (6)0.8141 (2)0.06907 (12)0.0272 (5)
C60.0927 (6)0.6825 (2)0.07920 (11)0.0250 (5)
C70.2578 (6)0.5739 (2)0.06724 (12)0.0298 (5)
H70.29120.55070.02490.036*
C80.3744 (6)0.4991 (2)0.11710 (12)0.0312 (5)
H80.48990.42510.10920.037*
C90.3206 (6)0.5336 (2)0.17836 (12)0.0293 (5)
C100.1548 (6)0.6416 (2)0.19065 (12)0.0308 (5)
H100.11950.66400.23310.037*
C110.0404 (6)0.7172 (2)0.14101 (12)0.0291 (5)
H110.07240.79170.14910.035*
C510.0278 (8)0.8248 (3)0.13792 (14)0.0428 (7)
H5110.09570.89990.14650.064*
H5120.24850.82840.16030.064*
H5130.09280.75310.15260.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03697 (17)0.03874 (18)0.03746 (17)0.00197 (11)0.00042 (11)0.01047 (11)
O30.0403 (10)0.0261 (9)0.0297 (9)0.0065 (7)0.0111 (7)0.0003 (7)
N10.0328 (11)0.0312 (11)0.0243 (10)0.0026 (9)0.0047 (8)0.0035 (8)
N20.0282 (10)0.0253 (10)0.0239 (10)0.0012 (8)0.0055 (7)0.0029 (7)
N40.0296 (10)0.0242 (10)0.0270 (10)0.0018 (8)0.0044 (8)0.0017 (8)
C30.0265 (11)0.0229 (11)0.0279 (11)0.0023 (9)0.0045 (9)0.0002 (9)
C50.0286 (12)0.0267 (12)0.0268 (11)0.0001 (9)0.0052 (9)0.0034 (9)
C60.0232 (11)0.0247 (11)0.0272 (12)0.0025 (9)0.0024 (9)0.0008 (9)
C70.0305 (12)0.0281 (12)0.0308 (12)0.0035 (10)0.0036 (9)0.0039 (10)
C80.0303 (12)0.0290 (13)0.0340 (13)0.0044 (10)0.0008 (10)0.0012 (10)
C90.0257 (11)0.0301 (12)0.0320 (12)0.0027 (10)0.0012 (9)0.0053 (10)
C100.0359 (13)0.0308 (12)0.0262 (12)0.0013 (11)0.0056 (10)0.0026 (10)
C110.0340 (13)0.0263 (12)0.0278 (12)0.0030 (10)0.0066 (9)0.0013 (9)
C510.0506 (17)0.0473 (18)0.0307 (14)0.0063 (13)0.0049 (12)0.0008 (12)
Geometric parameters (Å, º) top
Br1—C91.902 (2)C7—C81.388 (3)
O3—C31.234 (3)C7—H70.9500
N1—C51.297 (3)C8—C91.381 (4)
N1—N21.400 (3)C8—H80.9500
N2—C31.372 (3)C9—C101.384 (4)
N2—C61.420 (3)C10—C111.387 (4)
N4—C51.363 (3)C10—H100.9500
N4—C31.372 (3)C11—H110.9500
N4—H40.82 (3)C51—H5110.9800
C5—C511.478 (4)C51—H5120.9800
C6—C71.386 (3)C51—H5130.9800
C6—C111.391 (3)
C5—N1—N2103.8 (2)C9—C8—C7119.2 (2)
C3—N2—N1111.8 (2)C9—C8—H8120.4
C3—N2—C6129.0 (2)C7—C8—H8120.4
N1—N2—C6119.2 (2)C8—C9—C10121.0 (2)
C5—N4—C3108.4 (2)C8—C9—Br1119.60 (19)
C5—N4—H4127 (2)C10—C9—Br1119.40 (19)
C3—N4—H4124 (2)C9—C10—C11120.0 (2)
O3—C3—N2128.9 (2)C9—C10—H10120.0
O3—C3—N4127.6 (2)C11—C10—H10120.0
N2—C3—N4103.5 (2)C10—C11—C6119.2 (2)
N1—C5—N4112.5 (2)C10—C11—H11120.4
N1—C5—C51124.3 (2)C6—C11—H11120.4
N4—C5—C51123.2 (2)C5—C51—H511109.5
C7—C6—C11120.5 (2)C5—C51—H512109.5
C7—C6—N2118.6 (2)H511—C51—H512109.5
C11—C6—N2120.9 (2)C5—C51—H513109.5
C6—C7—C8120.1 (2)H511—C51—H513109.5
C6—C7—H7120.0H512—C51—H513109.5
C8—C7—H7120.0
C5—N1—N2—C30.1 (3)N1—N2—C6—C79.5 (3)
C5—N1—N2—C6179.2 (2)C3—N2—C6—C118.4 (4)
N1—N2—C3—O3179.8 (2)N1—N2—C6—C11170.5 (2)
C6—N2—C3—O30.8 (4)C11—C6—C7—C80.4 (4)
N1—N2—C3—N40.0 (3)N2—C6—C7—C8179.6 (2)
C6—N2—C3—N4179.0 (2)C6—C7—C8—C90.7 (4)
C5—N4—C3—O3179.9 (2)C7—C8—C9—C100.5 (4)
C5—N4—C3—N20.1 (3)C7—C8—C9—Br1179.88 (19)
N2—N1—C5—N40.2 (3)C8—C9—C10—C110.1 (4)
N2—N1—C5—C51179.1 (2)Br1—C9—C10—C11179.57 (19)
C3—N4—C5—N10.2 (3)C9—C10—C11—C60.4 (4)
C3—N4—C5—C51179.1 (2)C7—C6—C11—C100.1 (4)
C3—N2—C6—C7171.6 (2)N2—C6—C11—C10179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O3i0.82 (3)1.94 (3)2.756 (3)171 (3)
Symmetry code: (i) x1, y+2, z.

Experimental details

Crystal data
Chemical formulaC9H8BrN3O
Mr254.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)160
a, b, c (Å)4.0333 (1), 10.8622 (2), 21.1608 (4)
β (°) 93.9045 (7)
V3)924.91 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.41
Crystal size (mm)0.25 × 0.08 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.550, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
22923, 2710, 2239
Rint0.087
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.07
No. of reflections2710
No. of parameters133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.75

Computer programs: COLLECT (Nonius, 2000), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Version 1.07; Farrugia, 1997), SHELXL97 and PLATON (Spek, 2002).

Selected geometric parameters (Å, º) top
N1—C51.297 (3)N4—C51.363 (3)
N1—N21.400 (3)N4—C31.372 (3)
N2—C31.372 (3)
C5—N1—N2103.8 (2)N2—C3—N4103.5 (2)
C3—N2—N1111.8 (2)N1—C5—N4112.5 (2)
C5—N4—C3108.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O3i0.82 (3)1.94 (3)2.756 (3)171 (3)
Symmetry code: (i) x1, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds