Download citation
Download citation
link to html
The crystal structure of the title compound, C5H12NO2+·H2PO3-, can be described as a stacking of L-val­in­ium and ­hydrogenphosphite ions. The stability of such an arrangement results from a network of hydrogen bonds, which maintain the cohesion of the organic-inorganic layers in the crystal. The asymmetric unit contains two valinium residues and two ­hydrogenphosphite ions, one of which is disordered.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803000795/dn6046sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803000795/dn6046Isup2.hkl
Contains datablock I

CCDC reference: 204682

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in solvent or counterion
  • R factor = 0.038
  • wR factor = 0.100
  • Data-to-parameter ratio = 10.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.36 From the CIF: _reflns_number_total 3629 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3839 Completeness (_total/calc) 94.53% Alert C: < 95% complete PLAT_302 Alert C Anion/Solvent Disorder ....................... 4.00 Perc. PLAT_420 Alert C D-H Without Acceptor P(1B) - >H(5C) ? PLAT_420 Alert C D-H Without Acceptor P(1A) - H(13A) ? PLAT_707 Alert C D...A Calc 2.6285(19), Rep 2.626(2), Dev. 1.32 Sigma O5A -O2A 1.555 1.555
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
5 Alert Level C = Please check

Comment top

In recent years, organic–inorganic hybrid materials have attracted considerable attention as preferable materials in non-linear optics (NLO), such as second harmonic generation (SHG) and optical bistability, owing to their large optical non-linearities (Masse & Zyss, 1991; Zaccaro et al., 1998; Mosset et al., 1996). The very high SGH and NLO properties make these hybrid materials highly attractive for application to frequency doubling of the light produced by semiconductor lasers (Kondo et al., 1988). Bis(L-valinium) monohydrogenphosphite is a result of our systematic investigation on organic–inorganic hybrid materials resulting from interaction between various phosphoric acids and amino acids. The structure can be described as mixed layers built with organic cations (C5H12NO2+) and phosphite anions (H2PO3), both layers developing parallel to the [ac] plane. The main feature of this stacking is the presence of strong hydrogen bonds, similar to those observed in other ionic compounds (Pecaut & Bagieu-Beucher, 1993; Averbuch-Pouchot, 1993). In a layer, the distance between the H2PO3 groups is significantly longer [P—P = 4.904 (3) A°] because the (HPO3H)n chain is more stretched. These entities form through strong hydrogen bonds infinite chains of (HPO3H)n parallel to the b axis. Phosphite groups are hydrogen bonded to the organic cation in two ways, first via the carboxylic acid group [O5A—H4A···O2A = 2.628 (2) Å] and second via the ammonium groups [N1A—H10A···O3B = 2.783 (2) Å, N1A—H11A···O4B = 2.837 (2) Å and N1A—H12A···O3B = 2.802 (2) Å; N1B—H10B···O3A = 2.845 (2) Å, N1B—H11B···O3A =2.724 (2) Å, and N1B—H12B···O4A = 2.852 (2) Å]. We did not observe any hydrogen bonds either between organic entities or between inorganic anions. The valinium residues adopt a gauche II conformation and their mean backbone conformation angles Ψ1(O2—C1—C2—N1) and Ψ2(O1—C1—C2—N1) [−11.7 (2)/168.8 (1) and −12.1 (2)/167.9 (1)° for cations A and B respectively] (Table 1)] are similar to those observed in DL-valinium dihydrogenphosphate (Ravikumar et al., 2002).

Experimental top

Crystals of bis L-valinium monohydrogenphosphite were prepared by slow evaporation at room temperature of an aqueous solution of L-valine and phosphorous acid in a stoichiometric ratio. After six months, crystals appeared as colourless prisms.

Refinement top

One of the monohydrogenphosphite anions is disordered. The disorder can be described as a rotation of this anion around the axis which bisects the O4B—P1B—O3B angle. The refined model corresponds to a disordered distribution between OH and H, with occupation factors of 0.85 and 0.15. Some of the H atoms were found in difference Fourier maps and were refined with isotropic displacement parameters. The hydroxyl H atoms were constrained using an AFIX 147 instruction. The H atoms of the disordered phosphite group were constrained.

Computing details top

Data collection: KappaCCD Reference Manual (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELX97 (Sheldrick, 1998); program(s) used to refine structure: SHELX97; molecular graphics: ORTEP2 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) view with the atomic labelling scheme showing the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
(I) top
Crystal data top
2C5H12NO2+·2H2PO3F(000) = 848
Mr = 398.29Dx = 1.408 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12190 reflections
a = 16.3590 (3) Åθ = 1.4–26.4°
b = 6.2540 (2) ŵ = 0.28 mm1
c = 19.4560 (3) ÅT = 293 K
β = 109.238 (1)°Prism, colorless
V = 1879.37 (8) Å30.60 × 0.40 × 0.35 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3205 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
Graphite monochromatorθmax = 26.4°, θmin = 1.4°
ϕ scansh = 2020
12190 measured reflectionsk = 77
3629 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.5313P]
where P = (Fo2 + 2Fc2)/3
3629 reflections(Δ/σ)max = 0.034
335 parametersΔρmax = 0.25 e Å3
6 restraintsΔρmin = 0.24 e Å3
Crystal data top
2C5H12NO2+·2H2PO3V = 1879.37 (8) Å3
Mr = 398.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.3590 (3) ŵ = 0.28 mm1
b = 6.2540 (2) ÅT = 293 K
c = 19.4560 (3) Å0.60 × 0.40 × 0.35 mm
β = 109.238 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3205 reflections with I > 2σ(I)
12190 measured reflectionsRint = 0.065
3629 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
3629 reflectionsΔρmin = 0.24 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1B0.94569 (9)0.7688 (2)0.94100 (8)0.0334 (3)
O2A1.11810 (8)0.56334 (19)0.75490 (7)0.0431 (3)
O1A1.00386 (8)0.7676 (2)0.74927 (7)0.0454 (3)
C1A1.07410 (10)0.7242 (2)0.73555 (8)0.0317 (3)
N1A1.18909 (8)0.8476 (2)0.69167 (7)0.0309 (3)
C2A1.09959 (10)0.8950 (2)0.69071 (8)0.0312 (3)
C3A1.03663 (11)0.9128 (3)0.61199 (9)0.0430 (4)
C4A1.01512 (19)0.6983 (5)0.57475 (13)0.0702 (7)
C5A0.95530 (16)1.0358 (5)0.60860 (15)0.0726 (7)
O4A0.96181 (8)0.50055 (19)0.82765 (6)0.0411 (3)
O4B0.72263 (8)1.39736 (19)1.08334 (6)0.0410 (3)
O3A0.98837 (8)0.16535 (19)0.90586 (6)0.0419 (3)
O3B0.73116 (8)1.06769 (19)1.16091 (6)0.0448 (3)
O5A1.08408 (9)0.2533 (2)0.83260 (9)0.0556 (4)
H14A1.09490.36190.81360.083*
P1B0.74461 (3)1.16508 (7)1.09540 (2)0.03368 (14)
P1A0.99145 (2)0.27053 (6)0.83830 (2)0.03187 (14)
O1B0.76483 (8)0.6622 (2)1.00204 (7)0.0446 (3)
O2B0.87394 (8)0.4572 (2)0.99502 (8)0.0510 (3)
C2B0.85797 (9)0.8103 (2)0.94514 (8)0.0308 (3)
C1B0.83356 (10)0.6222 (3)0.98358 (8)0.0336 (3)
C4B0.75966 (15)0.6568 (5)0.82464 (12)0.0634 (6)
C3B0.79278 (11)0.8582 (3)0.86876 (9)0.0432 (4)
C5B0.71834 (15)0.9975 (4)0.87349 (14)0.0641 (6)
O5B0.83698 (11)1.1263 (3)1.09437 (11)0.0635 (5)0.85
H14B0.85211.22761.07460.095*0.85
O13B0.7050 (7)1.0432 (19)1.0270 (4)0.051 (3)0.15
H13B0.73390.93581.02730.076*0.15
H13C0.8265 (14)1.18 (2)1.124 (6)0.030*0.15
H5C0.6973 (16)1.060 (5)1.0410 (13)0.030*0.85
H2A1.1035 (11)1.020 (3)0.7162 (10)0.035 (4)*
H2B0.8663 (10)0.936 (3)0.9752 (10)0.032 (4)*
H12A1.1954 (12)0.720 (4)0.6803 (10)0.041 (5)*
H12B0.9469 (13)0.656 (4)0.9113 (12)0.048 (5)*
H10A1.2256 (12)0.862 (3)0.7356 (11)0.038 (5)*
H11B0.9650 (12)0.890 (4)0.9284 (11)0.048 (5)*
H3A1.0678 (14)0.999 (3)0.5870 (12)0.058 (6)*
H11A1.2041 (12)0.934 (3)0.6633 (11)0.041 (5)*
H9B0.6776 (17)0.920 (5)0.8938 (15)0.084 (8)*
H10B0.9826 (13)0.741 (3)0.9845 (12)0.047 (5)*
H3B0.8266 (13)0.942 (4)0.8457 (12)0.057 (6)*
H7A0.9212 (18)0.946 (5)0.6325 (16)0.090 (9)*
H5A1.0689 (19)0.633 (5)0.5752 (15)0.087 (9)*
H6A0.9782 (16)0.718 (4)0.5227 (15)0.076 (7)*
H8A0.9165 (19)1.059 (5)0.5602 (18)0.098 (9)*
H7B0.6794 (19)1.049 (5)0.8248 (18)0.104 (10)*
H8B0.7389 (17)1.139 (5)0.8987 (15)0.083 (8)*
H4A0.986 (2)0.614 (6)0.598 (2)0.111 (12)*
H6B0.8068 (17)0.560 (4)0.8229 (14)0.077 (8)*
H1B0.7575 (17)0.571 (4)1.0233 (15)0.071 (8)*
H5B0.7236 (17)0.679 (5)0.7726 (16)0.081 (8)*
H4B0.722 (2)0.583 (5)0.8469 (17)0.097 (9)*
H1A0.9971 (17)0.670 (5)0.7759 (15)0.086 (9)*
H9A0.9753 (19)1.195 (6)0.6354 (17)0.102 (10)*
H13A0.9486 (8)0.163 (2)0.7816 (7)0.014 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1B0.0359 (7)0.0342 (7)0.0326 (7)0.0042 (5)0.0145 (6)0.0037 (5)
O2A0.0483 (6)0.0390 (7)0.0524 (7)0.0071 (5)0.0306 (5)0.0152 (5)
O1A0.0489 (7)0.0456 (7)0.0541 (7)0.0097 (5)0.0339 (6)0.0164 (6)
C1A0.0383 (8)0.0311 (8)0.0293 (7)0.0005 (6)0.0162 (6)0.0016 (5)
N1A0.0375 (7)0.0275 (7)0.0305 (7)0.0019 (5)0.0150 (6)0.0022 (5)
C2A0.0380 (8)0.0278 (8)0.0328 (7)0.0006 (6)0.0184 (6)0.0024 (6)
C3A0.0393 (8)0.0548 (11)0.0367 (8)0.0016 (7)0.0150 (7)0.0122 (7)
C4A0.0668 (15)0.0852 (18)0.0446 (12)0.0021 (13)0.0005 (11)0.0144 (11)
C5A0.0557 (12)0.092 (2)0.0697 (15)0.0274 (13)0.0204 (11)0.0304 (14)
O4A0.0490 (6)0.0375 (6)0.0487 (6)0.0093 (5)0.0319 (5)0.0098 (5)
O4B0.0554 (7)0.0346 (6)0.0457 (6)0.0059 (5)0.0339 (5)0.0053 (5)
O3A0.0547 (7)0.0383 (7)0.0379 (6)0.0057 (5)0.0224 (5)0.0072 (5)
O3B0.0631 (7)0.0380 (6)0.0356 (6)0.0061 (5)0.0193 (5)0.0026 (5)
O5A0.0533 (8)0.0433 (8)0.0846 (10)0.0144 (6)0.0424 (7)0.0235 (7)
P1B0.0430 (2)0.0306 (2)0.0323 (2)0.00354 (15)0.01885 (17)0.00120 (14)
P1A0.0378 (2)0.0308 (2)0.0311 (2)0.00076 (15)0.01700 (16)0.00251 (14)
O1B0.0504 (7)0.0431 (7)0.0516 (7)0.0042 (5)0.0324 (6)0.0152 (5)
O2B0.0539 (7)0.0369 (7)0.0719 (9)0.0045 (6)0.0340 (6)0.0142 (6)
C2B0.0355 (7)0.0310 (8)0.0290 (7)0.0025 (6)0.0147 (6)0.0015 (6)
C1B0.0380 (8)0.0338 (8)0.0310 (7)0.0033 (6)0.0142 (6)0.0025 (6)
C4B0.0445 (11)0.0944 (18)0.0460 (11)0.0004 (11)0.0078 (9)0.0207 (11)
C3B0.0388 (8)0.0588 (11)0.0327 (8)0.0000 (8)0.0129 (6)0.0126 (7)
C5B0.0583 (12)0.0656 (15)0.0650 (13)0.0185 (11)0.0156 (10)0.0215 (11)
O5B0.0532 (10)0.0722 (13)0.0755 (12)0.0187 (9)0.0351 (8)0.0009 (9)
O13B0.083 (7)0.046 (5)0.025 (4)0.014 (4)0.021 (4)0.012 (3)
Geometric parameters (Å, º) top
N1B—C2B1.4863 (19)O3B—P1B1.4930 (12)
O2A—C1A1.2218 (19)O5A—P1A1.5591 (12)
O1A—C1A1.2913 (18)P1B—O13B1.484 (6)
C1A—C2A1.522 (2)P1B—O5B1.5369 (16)
N1A—C2A1.4879 (19)O1B—C1B1.3121 (19)
C2A—C3A1.542 (2)O2B—C1B1.206 (2)
C3A—C4A1.510 (3)C2B—C1B1.517 (2)
C3A—C5A1.519 (3)C2B—C3B1.546 (2)
O4A—P1A1.5104 (12)C4B—C3B1.520 (3)
O4B—P1B1.4964 (12)C3B—C5B1.525 (3)
O3A—P1A1.4855 (11)
O2A—C1A—O1A125.70 (14)O4B—P1B—O5B109.73 (10)
O2A—C1A—C2A120.64 (13)O3A—P1A—O4A116.11 (7)
O1A—C1A—C2A113.66 (13)O3A—P1A—O5A110.45 (7)
N1A—C2A—C1A107.89 (12)O4A—P1A—O5A109.37 (7)
N1A—C2A—C3A111.05 (12)N1B—C2B—C1B107.88 (13)
C1A—C2A—C3A113.60 (13)N1B—C2B—C3B110.75 (12)
C4A—C3A—C5A111.5 (2)C1B—C2B—C3B114.44 (13)
C4A—C3A—C2A112.72 (16)O2B—C1B—O1B125.42 (14)
C5A—C3A—C2A111.60 (16)O2B—C1B—C2B122.52 (13)
O13B—P1B—O3B114.3 (5)O1B—C1B—C2B112.07 (14)
O13B—P1B—O4B110.3 (5)C4B—C3B—C5B111.37 (18)
O3B—P1B—O4B115.76 (7)C4B—C3B—C2B112.77 (17)
O13B—P1B—O5B92.8 (4)C5B—C3B—C2B111.37 (16)
O3B—P1B—O5B111.65 (10)
O2A—C1A—C2A—N1A11.7 (2)N1B—C2B—C1B—O2B12.1 (2)
O1A—C1A—C2A—N1A168.78 (13)N1B—C2B—C1B—O1B167.89 (13)
N1A—C2A—C3A—C4A74.0 (2)N1B—C2B—C3B—C4B80.56 (19)
N1A—C2A—C3A—C5A159.58 (18)N1B—C2B—C3B—C5B153.39 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O4A0.83 (3)1.69 (3)2.506 (2)167 (3)
O1B—H1B···O4Bi0.74 (3)1.82 (3)2.538 (2)165 (3)
N1A—H10A···O3Bii0.87 (2)1.95 (2)2.783 (2)159 (2)
N1B—H11B···O3Aiii0.89 (2)1.85 (2)2.724 (2)170 (2)
N1A—H11A···O4Biv0.87 (2)1.98 (2)2.837 (2)169 (2)
N1B—H10B···O3Av0.88 (2)2.11 (2)2.845 (2)141 (2)
N1A—H12A···O3Bvi0.84 (2)1.97 (2)2.802 (2)170 (2)
N1B—H12B···O4A0.91 (2)1.98 (2)2.852 (2)159 (2)
O5A—H14A···O2A0.821.822.626 (2)167
O5B—H14B···O2Biii0.822.233.026 (2)165
O13B—H13B···O1B0.821.902.681 (11)160
Symmetry codes: (i) x, y1, z; (ii) x+2, y+2, z+2; (iii) x, y+1, z; (iv) x+1/2, y+5/2, z1/2; (v) x+2, y+1, z+2; (vi) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula2C5H12NO2+·2H2PO3
Mr398.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)16.3590 (3), 6.2540 (2), 19.4560 (3)
β (°) 109.238 (1)
V3)1879.37 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.60 × 0.40 × 0.35
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12190, 3629, 3205
Rint0.065
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.06
No. of reflections3629
No. of parameters335
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SHELX97 (Sheldrick, 1998), SHELX97, ORTEP2 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O2A—C1A1.2218 (19)O5A—P1A1.5591 (12)
O1A—C1A1.2913 (18)P1B—O13B1.484 (6)
O4A—P1A1.5104 (12)P1B—O5B1.5369 (16)
O4B—P1B1.4964 (12)O1B—C1B1.3121 (19)
O3A—P1A1.4855 (11)O2B—C1B1.206 (2)
O3B—P1B1.4930 (12)
O2A—C1A—O1A125.70 (14)O4B—P1B—O5B109.73 (10)
O13B—P1B—O3B114.3 (5)O3A—P1A—O4A116.11 (7)
O13B—P1B—O4B110.3 (5)O3A—P1A—O5A110.45 (7)
O3B—P1B—O4B115.76 (7)O4A—P1A—O5A109.37 (7)
O3B—P1B—O5B111.65 (10)O2B—C1B—O1B125.42 (14)
O2A—C1A—C2A—N1A11.7 (2)N1B—C2B—C1B—O2B12.1 (2)
O1A—C1A—C2A—N1A168.78 (13)N1B—C2B—C1B—O1B167.89 (13)
N1A—C2A—C3A—C4A74.0 (2)N1B—C2B—C3B—C4B80.56 (19)
N1A—C2A—C3A—C5A159.58 (18)N1B—C2B—C3B—C5B153.39 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O4A0.83 (3)1.69 (3)2.506 (2)167 (3)
O1B—H1B···O4Bi0.74 (3)1.82 (3)2.538 (2)165 (3)
N1A—H10A···O3Bii0.87 (2)1.95 (2)2.783 (2)159 (2)
N1B—H11B···O3Aiii0.89 (2)1.85 (2)2.724 (2)170 (2)
N1A—H11A···O4Biv0.87 (2)1.98 (2)2.837 (2)169 (2)
N1B—H10B···O3Av0.88 (2)2.11 (2)2.845 (2)141 (2)
N1A—H12A···O3Bvi0.84 (2)1.97 (2)2.802 (2)170 (2)
N1B—H12B···O4A0.91 (2)1.98 (2)2.852 (2)159 (2)
O5A—H14A···O2A0.821.822.626 (2)167
O5B—H14B···O2Biii0.822.233.026 (2)165
O13B—H13B···O1B0.821.902.681 (11)160
Symmetry codes: (i) x, y1, z; (ii) x+2, y+2, z+2; (iii) x, y+1, z; (iv) x+1/2, y+5/2, z1/2; (v) x+2, y+1, z+2; (vi) x+1/2, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds