Download citation
Download citation
link to html
In the crystal structure of the title compound, C5H7N5O2+·SO42-·H2O, the guaninium cation, the sulfate anion and the water mol­ecule form a network of hydrogen bonds. The structure consists of layers of guaninium ions and water mol­ecules parallel to the diagonal of the ac plane, linked by strong hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803000953/dn6052sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803000953/dn6052Isup2.hkl
Contains datablock I

CCDC reference: 204697

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.032
  • wR factor = 0.081
  • Data-to-parameter ratio = 11.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.36 From the CIF: _reflns_number_total 1821 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 1981 Completeness (_total/calc) 91.92% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The structure elucidation of nucleic acids and their derivatives is of interest, because of their widespread biological occurrence (Richards et al., 1972; Perutz & Eyck, 1972). A number of these compounds are effective metabolic inhibitors with useful chemotherapeutic activity (Roy-burman, 1970; Balis, 1968; Hitchings & Elion, 1963). In several crystals of compounds with organic bases and inorganic acids, the structure cohesion is assured by strong hydrogen bonds as was observed in guaninium dinitrate dihydrate (Bouchouit et al., 2002), adeninium sulfate (Langer & Huml, 1978a), adeninium hemisulfate hydrate (Langer & Huml, 1978b) and adeninium hydroboromide hemihydrate (Langer & Huml, 1978c). Two structures of guanine with inorganic acids have been reported, namely guaninium dinitrate dihydrate and guaninium dichloride (Matkovic-Calogovic & Sankovic, 1999).

The determination of the crystal and molecular structure of guaninium sulfate hydrate, (I), forms part of a study on the interactions between organic bases and inorganic acids. The dimensions of the sulfate anion (Fig. 1) are comparable with those found in other sulfates (e.g. Cherouana et al., 2002; Srinivasan et al., 2001). The S—O bond lengths are in the range 1.4653 (16)–1.4874 (13) Å, while the O—S—O angles range from 108.23 (8) to 110.88 (9)°. As was observed in guanium dinitrate dihydrate, the imino groups of the pyrimidine and imidazolyl moieties (N3 and N7) in guanine are protonated. There is an intricate hydrogen-bond network (Fig. 2). The diprotonated guanine in (I) is hydrogen bonded to four sulfate groups [via N1—H1···O2 for the first group, N3—H3···O3 and N2—H21···O1 for the second group, N9—H9···O1 for the third and N2—H21···O3 and N2—H22···O4 for the last group]. We also observed that the water molecule forms three hydrogen bonds with the guaninium and sulfate ions, where it has two different behaviors, viz. as donor with the sulfate anion [via O1w—H1w···O4 and O1w—H2w···O6] and as acceptor with the guaninium ion [via N7—H7···O1w]. This system of hydrogen bonds among the guaninium cations, the sulfate anions and the water molecule generates a succession of layers parallel to the diagonal of ac plane (Fig. 3). Layers of guaninium cations and water molecules are linked by strong anion–cation and anion–water hydrogen bonds via the sandwiched sulfates.

Experimental top

Colorless single crystals of guaninium sulfate monohydrate were obtained after two weeks by slow evaporation at room temperature of an equimolar solution of guanine and sulfuric acid.

Refinement top

H atoms attached to C and N atoms were fixed at localized positions and refined using a riding model. H atoms belonging to the water molecule were refined with an overal isotropic displacement parameter using restraints.

Computing details top

Data collection: KappaCCD Reference Manual (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrujia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) view of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. ORTEP-3 (Farrugia, 1997) view showing the intricated hydrogen-bond interactions between anions and cations. [Symmetry codes: (i) −x, y + 1/2, −z + 3/2; (ii) x, y + 1, z; (iii) −x + 1, y + 1/2, −z + 1/2; (iv) x, −y + 1/2, z − 1/2.]
[Figure 3] Fig. 3. ORTEP-3 (Farrugia, 1997) diagram of the layered packing of the title compound, viewed down the b axis.
(I) top
Crystal data top
C5H7N5O2+·SO42·H2OF(000) = 552
Mr = 267.24Dx = 1.823 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6875 reflections
a = 8.9940 (3) Åθ = 2.8–26.4°
b = 10.2020 (2) ŵ = 0.37 mm1
c = 11.0440 (3) ÅT = 293 K
β = 106.04 (2)°Plate, colorless
V = 973.9 (1) Å30.4 × 0.1 × 0.01 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1631 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 26.4°, θmin = 2.8°
ϕ scansh = 1111
6875 measured reflectionsk = 1212
1821 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.4753P]
where P = (Fo2 + 2Fc2)/3
1821 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
C5H7N5O2+·SO42·H2OV = 973.9 (1) Å3
Mr = 267.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9940 (3) ŵ = 0.37 mm1
b = 10.2020 (2) ÅT = 293 K
c = 11.0440 (3) Å0.4 × 0.1 × 0.01 mm
β = 106.04 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1631 reflections with I > 2σ(I)
6875 measured reflectionsRint = 0.033
1821 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.26 e Å3
1821 reflectionsΔρmin = 0.41 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15170 (5)0.18894 (4)0.76616 (4)0.01967 (15)
O10.07493 (16)0.06048 (12)0.72724 (13)0.0277 (3)
O40.23663 (17)0.22839 (13)0.67648 (14)0.0312 (3)
O30.03023 (17)0.28698 (12)0.76575 (14)0.0320 (3)
O20.25598 (18)0.17756 (13)0.89364 (14)0.0357 (4)
O60.39762 (17)0.64077 (14)0.34702 (14)0.0346 (4)
N30.15176 (17)0.71507 (13)0.59978 (14)0.0198 (3)
H30.09810.72990.65180.024*
N90.18591 (17)0.94558 (14)0.55504 (14)0.0203 (3)
H90.13650.98190.60260.024*
N70.32181 (17)0.92071 (14)0.42100 (14)0.0221 (3)
H70.37350.93820.36810.027*
N10.26823 (17)0.57203 (14)0.48693 (14)0.0211 (3)
H10.28570.49190.47080.025*
N20.13960 (18)0.49136 (14)0.62537 (15)0.0244 (3)
H2A0.08720.50380.67870.029*
H2B0.16150.41300.60730.029*
C40.2061 (2)0.81454 (16)0.54207 (17)0.0185 (4)
C80.2576 (2)1.00756 (17)0.47956 (17)0.0230 (4)
H80.26141.09800.47000.028*
C50.2918 (2)0.79703 (16)0.45925 (17)0.0197 (4)
C20.18605 (19)0.59172 (16)0.57161 (16)0.0189 (4)
C60.3272 (2)0.66855 (17)0.42342 (17)0.0218 (4)
O1W0.50847 (16)0.42759 (15)0.23912 (14)0.0326 (4)
H1W0.438 (3)0.367 (2)0.225 (3)0.059 (6)*
H2W0.472 (3)0.493 (2)0.271 (3)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0285 (2)0.0127 (2)0.0228 (3)0.00125 (16)0.01545 (18)0.00129 (15)
O10.0373 (7)0.0177 (6)0.0332 (8)0.0060 (5)0.0185 (6)0.0062 (5)
O40.0410 (8)0.0238 (7)0.0397 (9)0.0050 (6)0.0294 (7)0.0076 (6)
O30.0409 (8)0.0187 (7)0.0478 (9)0.0089 (6)0.0313 (7)0.0072 (6)
O20.0531 (9)0.0231 (7)0.0276 (9)0.0035 (6)0.0054 (7)0.0021 (5)
O60.0496 (9)0.0269 (7)0.0398 (9)0.0010 (6)0.0335 (7)0.0051 (6)
N30.0254 (8)0.0176 (7)0.0215 (9)0.0007 (6)0.0147 (6)0.0010 (5)
N90.0255 (7)0.0156 (7)0.0225 (8)0.0017 (6)0.0111 (6)0.0023 (6)
N70.0289 (8)0.0198 (8)0.0212 (9)0.0028 (6)0.0130 (6)0.0014 (6)
N10.0306 (8)0.0145 (7)0.0213 (9)0.0010 (6)0.0123 (6)0.0027 (5)
N20.0317 (8)0.0184 (8)0.0266 (9)0.0011 (6)0.0140 (7)0.0024 (6)
C40.0215 (8)0.0163 (8)0.0189 (10)0.0009 (6)0.0074 (7)0.0008 (6)
C80.0302 (9)0.0167 (8)0.0221 (10)0.0012 (7)0.0075 (7)0.0002 (7)
C50.0253 (9)0.0176 (8)0.0196 (10)0.0016 (7)0.0117 (7)0.0004 (6)
C20.0205 (8)0.0186 (8)0.0175 (9)0.0006 (6)0.0054 (6)0.0013 (6)
C60.0257 (9)0.0205 (9)0.0220 (10)0.0004 (7)0.0113 (7)0.0020 (7)
O1W0.0284 (7)0.0383 (9)0.0367 (9)0.0038 (6)0.0184 (6)0.0123 (6)
Geometric parameters (Å, º) top
S1—O41.4643 (13)N9—C41.362 (2)
S1—O21.4647 (16)N7—C81.320 (2)
S1—O31.4803 (13)N7—C51.381 (2)
S1—O11.4883 (13)N1—C21.358 (2)
O6—C61.220 (2)N1—C61.396 (2)
N3—C21.352 (2)N2—C21.309 (2)
N3—C41.359 (2)C4—C51.361 (2)
N9—C81.345 (2)C5—C61.431 (2)
O4—S1—O2110.90 (9)C5—C4—N9108.44 (15)
O4—S1—O3109.55 (8)N7—C8—N9109.73 (15)
O2—S1—O3109.42 (9)C4—C5—N7106.31 (14)
O4—S1—O1109.50 (8)C4—C5—C6121.14 (15)
O2—S1—O1109.31 (8)N7—C5—C6132.47 (16)
O3—S1—O1108.12 (8)N2—C2—N3120.14 (16)
C2—N3—C4116.90 (15)N2—C2—N1119.97 (15)
C8—N9—C4107.20 (14)N3—C2—N1119.89 (15)
C8—N7—C5108.32 (15)O6—C6—N1121.71 (16)
C2—N1—C6126.63 (14)O6—C6—C5127.03 (17)
N3—C4—C5124.13 (15)N1—C6—C5111.26 (15)
N3—C4—N9127.43 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.861.752.6011 (19)167
N9—H9···O1ii0.861.812.6526 (19)167
N7—H7···O1Wiii0.861.802.637 (2)164
N1—H1···O2iv0.861.912.738 (2)160
N2—H2A···O1i0.862.092.934 (2)166
N2—H2B···O40.862.072.829 (2)146
O1W—H1W···O4iv0.86 (2)2.00 (2)2.838 (2)164 (3)
O1W—H2W···O60.86 (2)1.93 (2)2.793 (2)178 (1)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC5H7N5O2+·SO42·H2O
Mr267.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.9940 (3), 10.2020 (2), 11.0440 (3)
β (°) 106.04 (2)
V3)973.9 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.4 × 0.1 × 0.01
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6875, 1821, 1631
Rint0.033
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.11
No. of reflections1821
No. of parameters161
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.41

Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrujia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.861.752.6011 (19)167
N9—H9···O1ii0.861.812.6526 (19)167
N7—H7···O1Wiii0.861.802.637 (2)164
N1—H1···O2iv0.861.912.738 (2)160
N2—H2A···O1i0.862.092.934 (2)166
N2—H2B···O40.862.072.829 (2)146
O1W—H1W···O4iv0.86 (2)2.00 (2)2.838 (2)164 (3)
O1W—H2W···O60.86 (2)1.93 (2)2.793 (2)178 (1)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds