Download citation
Download citation
link to html
The crystal structure of the title compound, C16H22N2O3, was undertaken in the course of a study on an acyl­ated pseudoephedrine-derived 1,3,4-oxadiazinan-2-one. The conformation adopted by this heterocycle is a contorted half-chair, in which the imide carbonyls are arranged with the carbonyl groups oriented approximately syn to each other. The torsion angle between the imide carbonyl groups is 37.6 (2)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803001314/lh6027sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803001314/lh6027Isup2.hkl
Contains datablock I

CCDC reference: 204708

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.036
  • wR factor = 0.097
  • Data-to-parameter ratio = 9.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.79 From the CIF: _reflns_number_total 1792 Count of symmetry unique reflns 1791 Completeness (_total/calc) 100.06% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1 Fraction of Friedel pairs measured 0.001 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

Chiral non-racemic oxazolidin-2-ones serve as chiral auxiliaries in asymmetric transformations, most notably in the aldol addition reaction (Evans et al., 2002; Crimmins et al., 2001; Ager et al., 1997); however, the related 1,3,4-oxadiazinan-2-one heterocycles have received little notice since their disclosure (Trepanier et al., 1968). Recently, 1,3,4-oxadiazinan-2-ones were successfully employed as chiral auxiliaries in dipolar cycloadditions (Roussi et al., 2000) and in diastereoselective alkylations (Roussi et al., 1998). We have conducted synthetic (Hitchcock et al., 2001) and conformational studies (Casper et al., 2002) of 1,3,4-oxadiazinan-2-one derivatives.

Herein we report the X-ray structure of the N3-trimethylacetyl derivatized pseudoephedrine-derived 1,3,4-oxadiazinan-2-one (I). The structure of (I) nominally exhibits syn-parallel carbonyls, consistent with our recently reported acetyl and propionyl variants. Crystallographic analysis of these latter two compounds revealed that these heterocycles adopt twist–boat conformations in which the imide carbonyl groups are arranged syn–parallel, as evidenced by the 3.1 (2) (acetyl) and 3.3 (1)° (propionyl) torsion angles between carbonyl groups (Casper et al., 2002). Similarly, the N3-trimethylacetyl derivative displays imide carbonyl groups tending towards a syn–parallel orientation, with an O21—C2—C15—O16 torsion angle of 37.6 (2)°. Remarkably, rather than maintaining the acetyl and propionyl derivatives' twist–boat conformation by allowing the trimetylacetyl carbonyl group to rotate to an antiparallel orientation, to alleviate N4-methyl and tert-butyl steric interactions, compound (I) adopts a contorted half-chair conformation, in which the imide carbonyl groups remain arranged with the carbonyl groups oriented in the same direction. Compound (I) displays a torsion angle of 154.2 (2)° for N4—N3—C2—O21, while values of 175.8 (2) and 178.6 (1)° are observed in the respective N3-acetyl and the N3-propionyl variants. Based on the amount of distortion of the π system and 13C NMR analysis, it is possible this is not the structure idealized in solution. As noted in other oxadiazinanone systems, the N3-substituent is rigidly held, while the N4-methyl group must rearrange to relieve allylic strain (Casper et al., 2002). Noteworthy is the X-ray structure of the ephedrine (C6-epimer of related pseudoephedrine) based N3-phenylacetylated oxadiazinanone, which also displays syn-parallel imide carbonyl groups, torsion angle of 19.5 (4)° (Hitchcock et al., 2001). These four structures suggest the syn–parallel conformation is strongly preferred for the carbonyl moieties of 1,3,4-oxadiazinan-2-ones. The predominance of the parallel arrangement is remarkable in that the antiparallel conformation is observed in the related N3-acyloxazolidin-2-ones (Evans et al., 1981) and should be energetically favorable based on a reduced dipole moment. The title compound crystallized in the orthorhombic space group P212121 (McArdle, 1996) and stacks with the phenyl substituents superimposed along and parallel with the stacking axis (Fig 2). The closest intermolecular interactions are H6···O21i of 2.46 Å and H18A···N4 of 2.45 Å [symmetry code: (i) −1/2 + x, 1/2 − y, 1 − z]. Neither of these or other intermolecular interactions seem particularly relevant to attributing packing arguments as explanation of the dicarbonyl conformation.

Experimental top

The title compound was prepared by acylation of pseudoephedrine derived 1,3,4-oxadiazinan-2-one using sodium hydride and trimethylacetylchloride (Casper et al., 2002). Colorless clear single crystals were grown by vapor diffusion of cyclohexane into dichloromethane at 269 K. For data collection, a sample crystal was glued to the end of a glass fiber.

Refinement top

All hydrogen atoms were included in the refinement in the riding model approximation, with isotropic displacement parameters fixed at 1.2Ueq of the parent atom. No evidence for disorder or included solvents was identified through difference Fourier synthesis. While 1320 Friedel equivalent pairs were measured, the use of Mo radiation with the exclusively light atom sample precluded the calculation of a meaningful Flack parameter (Flack et al., 2000). The absolute structure was inferred from the chiral chemical precursors.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare, 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury1.1 (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Perspective view of (I), showing the atom-labeling scheme. Non-H atoms are represented by ellipsoids at the 50% probability level. H atoms have been drawn arbitrarily small and are not labeled.
[Figure 2] Fig. 2. The molecular packing of (I), viewed along the a axis.
(I) top
Crystal data top
C16H22N2O3F(000) = 624
Mr = 290.36Dx = 1.192 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 23 reflections
a = 10.1079 (7) Åθ = 10.8–16.7°
b = 11.4087 (10) ŵ = 0.08 mm1
c = 14.0354 (9) ÅT = 293 K
V = 1618.5 (2) Å3Block, colorless
Z = 40.76 × 0.72 × 0.4 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.057
non–profiled ω/2θ scansθmax = 25.8°, θmin = 2.3°
Absorption correction: ψ scan
(North et al., 1968)
h = 012
Tmin = 0.953, Tmax = 0.967k = 1313
3414 measured reflectionsl = 017
1792 independent reflections3 standard reflections every 120 min
1484 reflections with I > 2σ(I) intensity decay: 4%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.052P)2 + 0.0905P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.13 e Å3
1792 reflectionsΔρmin = 0.17 e Å3
195 parameters
Crystal data top
C16H22N2O3V = 1618.5 (2) Å3
Mr = 290.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.1079 (7) ŵ = 0.08 mm1
b = 11.4087 (10) ÅT = 293 K
c = 14.0354 (9) Å0.76 × 0.72 × 0.4 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1484 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.057
Tmin = 0.953, Tmax = 0.9673 standard reflections every 120 min
3414 measured reflections intensity decay: 4%
1792 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.13 e Å3
1792 reflectionsΔρmin = 0.17 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45022 (15)0.12416 (15)0.45945 (9)0.0526 (4)
C20.5757 (2)0.15263 (18)0.47948 (14)0.0430 (5)
N30.61434 (16)0.14665 (16)0.57649 (11)0.0421 (4)
N40.51348 (15)0.15535 (15)0.64721 (12)0.0401 (4)
C50.41482 (19)0.06400 (17)0.62660 (13)0.0398 (4)
H50.46130.01130.62390.048*
C60.3512 (2)0.08480 (18)0.52927 (14)0.0418 (4)
H60.28550.14740.53640.05*
C70.28190 (19)0.02082 (18)0.49006 (14)0.0436 (5)
C80.3507 (3)0.1174 (2)0.45725 (17)0.0588 (6)
H80.44270.11530.45520.071*
C90.2844 (3)0.2174 (2)0.4272 (2)0.0759 (8)
H90.33170.2820.40550.091*
C100.1474 (4)0.2203 (3)0.4299 (2)0.0823 (9)
H100.10270.28740.41050.099*
C110.0777 (3)0.1251 (3)0.46091 (19)0.0770 (9)
H110.01430.12730.46180.092*
C120.1435 (2)0.0256 (2)0.49099 (16)0.0559 (6)
H120.09540.03880.51210.067*
C130.3097 (2)0.0551 (2)0.70436 (15)0.0569 (6)
H13A0.35190.04470.7650.068*
H13B0.25310.01060.69160.068*
H13C0.2580.12570.70530.068*
C140.4607 (2)0.27577 (19)0.65025 (17)0.0540 (5)
H14A0.53140.32970.6630.065*
H14B0.39540.28150.69970.065*
H14C0.42090.29450.590.065*
C150.7424 (2)0.10673 (19)0.60147 (15)0.0474 (5)
O160.81299 (18)0.0701 (2)0.53886 (13)0.0816 (6)
C170.7863 (2)0.1090 (2)0.70626 (15)0.0509 (5)
C180.7154 (3)0.0112 (3)0.76160 (19)0.0695 (7)
H18A0.62210.02710.76320.083*
H18B0.74910.00810.82550.083*
H18C0.73050.06260.73060.083*
C190.7650 (3)0.2290 (3)0.75227 (18)0.0747 (7)
H19A0.80020.28890.71150.09*
H19B0.80940.23140.81270.09*
H19C0.67210.2420.76150.09*
C200.9354 (2)0.0816 (3)0.7064 (2)0.0772 (8)
H20A0.95010.0060.67820.093*
H20B0.96750.08140.77080.093*
H20C0.98150.14030.67030.093*
O210.64693 (17)0.18500 (15)0.41656 (11)0.0579 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0490 (8)0.0643 (10)0.0446 (7)0.0120 (7)0.0036 (6)0.0099 (7)
C20.0455 (11)0.0375 (9)0.0459 (10)0.0020 (9)0.0038 (9)0.0013 (9)
N30.0369 (8)0.0478 (9)0.0415 (8)0.0018 (7)0.0036 (7)0.0010 (8)
N40.0370 (8)0.0394 (8)0.0440 (8)0.0035 (7)0.0034 (7)0.0042 (7)
C50.0373 (9)0.0380 (9)0.0442 (9)0.0028 (8)0.0021 (8)0.0001 (8)
C60.0380 (10)0.0422 (10)0.0454 (10)0.0013 (9)0.0029 (8)0.0034 (8)
C70.0438 (11)0.0453 (10)0.0416 (10)0.0017 (9)0.0014 (9)0.0021 (8)
C80.0595 (13)0.0561 (13)0.0607 (13)0.0062 (12)0.0074 (11)0.0086 (11)
C90.108 (2)0.0516 (13)0.0685 (16)0.0010 (16)0.0132 (17)0.0101 (13)
C100.104 (2)0.0735 (19)0.0696 (17)0.041 (2)0.0156 (17)0.0003 (15)
C110.0651 (16)0.099 (2)0.0664 (15)0.0359 (17)0.0017 (14)0.0058 (16)
C120.0447 (11)0.0681 (14)0.0550 (12)0.0062 (12)0.0038 (10)0.0019 (12)
C130.0499 (12)0.0709 (15)0.0498 (12)0.0028 (12)0.0071 (10)0.0005 (11)
C140.0554 (13)0.0420 (11)0.0645 (13)0.0076 (10)0.0017 (11)0.0097 (10)
C150.0394 (9)0.0476 (11)0.0552 (11)0.0019 (9)0.0058 (9)0.0038 (9)
O160.0613 (10)0.1188 (16)0.0646 (10)0.0366 (12)0.0103 (9)0.0024 (11)
C170.0437 (11)0.0556 (12)0.0534 (11)0.0005 (11)0.0024 (10)0.0089 (10)
C180.0638 (14)0.0750 (16)0.0697 (15)0.0002 (15)0.0014 (13)0.0284 (13)
C190.0792 (17)0.0752 (17)0.0698 (15)0.0067 (16)0.0184 (16)0.0104 (14)
C200.0470 (12)0.105 (2)0.0795 (17)0.0067 (15)0.0079 (13)0.0156 (18)
O210.0558 (8)0.0687 (10)0.0492 (7)0.0102 (8)0.0072 (8)0.0080 (7)
Geometric parameters (Å, º) top
O1—C21.339 (3)C11—H110.93
O1—C61.471 (2)C12—H120.93
C2—O211.198 (3)C13—H13A0.96
C2—N31.418 (3)C13—H13B0.96
N3—C151.416 (3)C13—H13C0.96
N3—N41.426 (2)C14—H14A0.96
N4—C51.471 (3)C14—H14B0.96
N4—C141.474 (3)C14—H14C0.96
C5—C131.526 (3)C15—O161.207 (3)
C5—C61.528 (3)C15—C171.536 (3)
C5—H50.98C17—C191.529 (4)
C6—C71.499 (3)C17—C181.537 (3)
C6—H60.98C17—C201.538 (3)
C7—C81.382 (3)C18—H18A0.96
C7—C121.400 (3)C18—H18B0.96
C8—C91.389 (4)C18—H18C0.96
C8—H80.93C19—H19A0.96
C9—C101.387 (5)C19—H19B0.96
C9—H90.93C19—H19C0.96
C10—C111.365 (5)C20—H20A0.96
C10—H100.93C20—H20B0.96
C11—C121.382 (4)C20—H20C0.96
C2—O1—C6125.36 (15)C5—C13—H13A109.5
O21—C2—O1119.31 (19)C5—C13—H13B109.5
O21—C2—N3123.8 (2)H13A—C13—H13B109.5
O1—C2—N3116.80 (17)C5—C13—H13C109.5
C15—N3—C2120.33 (16)H13A—C13—H13C109.5
C15—N3—N4120.22 (16)H13B—C13—H13C109.5
C2—N3—N4117.89 (16)N4—C14—H14A109.5
N3—N4—C5107.36 (14)N4—C14—H14B109.5
N3—N4—C14110.09 (16)H14A—C14—H14B109.5
C5—N4—C14114.87 (16)N4—C14—H14C109.5
N4—C5—C13112.22 (16)H14A—C14—H14C109.5
N4—C5—C6110.55 (15)H14B—C14—H14C109.5
C13—C5—C6110.89 (17)O16—C15—N3118.1 (2)
N4—C5—H5107.7O16—C15—C17122.1 (2)
C13—C5—H5107.7N3—C15—C17119.72 (18)
C6—C5—H5107.7C19—C17—C15112.26 (19)
O1—C6—C7108.59 (16)C19—C17—C18111.8 (2)
O1—C6—C5110.89 (15)C15—C17—C18109.68 (19)
C7—C6—C5113.58 (16)C19—C17—C20108.6 (2)
O1—C6—H6107.9C15—C17—C20106.3 (2)
C7—C6—H6107.9C18—C17—C20108.0 (2)
C5—C6—H6107.9C17—C18—H18A109.5
C8—C7—C12118.4 (2)C17—C18—H18B109.5
C8—C7—C6121.87 (19)H18A—C18—H18B109.5
C12—C7—C6119.7 (2)C17—C18—H18C109.5
C7—C8—C9120.9 (3)H18A—C18—H18C109.5
C7—C8—H8119.6H18B—C18—H18C109.5
C9—C8—H8119.6C17—C19—H19A109.5
C10—C9—C8119.6 (3)C17—C19—H19B109.5
C10—C9—H9120.2H19A—C19—H19B109.5
C8—C9—H9120.2C17—C19—H19C109.5
C11—C10—C9120.3 (3)H19A—C19—H19C109.5
C11—C10—H10119.8H19B—C19—H19C109.5
C9—C10—H10119.8C17—C20—H20A109.5
C10—C11—C12120.1 (3)C17—C20—H20B109.5
C10—C11—H11119.9H20A—C20—H20B109.5
C12—C11—H11119.9C17—C20—H20C109.5
C11—C12—C7120.7 (3)H20A—C20—H20C109.5
C11—C12—H12119.6H20B—C20—H20C109.5
C7—C12—H12119.6
C6—O1—C2—O21179.08 (19)C5—C6—C7—C871.3 (2)
C6—O1—C2—N31.5 (3)O1—C6—C7—C12131.0 (2)
O21—C2—N3—C1540.0 (3)C5—C6—C7—C12105.1 (2)
O1—C2—N3—C15142.58 (19)C12—C7—C8—C90.9 (3)
O21—C2—N3—N4154.2 (2)C6—C7—C8—C9175.6 (2)
O1—C2—N3—N423.2 (3)C7—C8—C9—C100.2 (4)
C15—N3—N4—C5110.60 (19)C8—C9—C10—C110.7 (5)
C2—N3—N4—C555.2 (2)C9—C10—C11—C120.8 (5)
C15—N3—N4—C14123.7 (2)C10—C11—C12—C70.1 (4)
C2—N3—N4—C1470.5 (2)C8—C7—C12—C110.8 (4)
N3—N4—C5—C13173.32 (16)C6—C7—C12—C11175.8 (2)
C14—N4—C5—C1363.9 (2)C2—N3—C15—O165.5 (3)
N3—N4—C5—C662.32 (19)N4—N3—C15—O16160.0 (2)
C14—N4—C5—C660.5 (2)C2—N3—C15—C17175.66 (19)
C2—O1—C6—C7133.3 (2)N4—N3—C15—C1718.8 (3)
C2—O1—C6—C57.9 (3)O16—C15—C17—C19129.6 (3)
N4—C5—C6—O139.9 (2)N3—C15—C17—C1951.6 (3)
C13—C5—C6—O1164.97 (18)O16—C15—C17—C18105.5 (3)
N4—C5—C6—C7162.46 (16)N3—C15—C17—C1873.3 (3)
C13—C5—C6—C772.4 (2)O16—C15—C17—C2011.0 (3)
O1—C6—C7—C852.5 (3)N3—C15—C17—C20170.2 (2)

Experimental details

Crystal data
Chemical formulaC16H22N2O3
Mr290.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.1079 (7), 11.4087 (10), 14.0354 (9)
V3)1618.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.76 × 0.72 × 0.4
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.953, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
3414, 1792, 1484
Rint0.057
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.04
No. of reflections1792
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare, 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and Mercury1.1 (Bruno et al., 2002), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C21.339 (3)N3—C151.416 (3)
C2—O211.198 (3)N3—N41.426 (2)
C2—N31.418 (3)C15—O161.207 (3)
O21—C2—O1119.31 (19)C15—N3—N4120.22 (16)
O21—C2—N3123.8 (2)C2—N3—N4117.89 (16)
O1—C2—N3116.80 (17)O16—C15—N3118.1 (2)
C15—N3—C2120.33 (16)
O1—C2—N3—C15142.58 (19)C14—N4—C5—C1363.9 (2)
O21—C2—N3—N4154.2 (2)N4—N3—C15—O16160.0 (2)
O1—C2—N3—N423.2 (3)N4—N3—C15—C1718.8 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds