Download citation
Download citation
link to html
The title compound, C15H9F6NO, is non-planar with a dihedral angle between the two aromatic rings of 29.57 (2)°. The central N=C bond distance of 1.276 (4) Å is typical for a double bond. There are intramolecular O—H...N and weak intermolecular C—H...F hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803000722/ob6204sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803000722/ob6204Isup2.hkl
Contains datablock I

CCDC reference: 204690

Key indicators

  • Single-crystal X-ray study
  • T = 180 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.063
  • wR factor = 0.191
  • Data-to-parameter ratio = 9.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
SHFSU_01 Alert C The absolute value of parameter shift to su ratio > 0.05 Absolute value of the parameter shift to su ratio given 0.062 Additional refinement cycles may be required. PLAT_213 Alert C Atom F4B has ADP max/min Ratio ........... 3.20 prolate
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Solvent extraction is now widely accepted as a process for the recovery of metal ions from aqueus solution in hydrometallurgical and environmental application (El Aamrani et al., 1999) with new interest in the processing of heavy metals by chelation incorporated with supercritical fluid (SCF) extraction processing. We have designed novel Shiff base type chelating agents by attaching CO2-philic fluoroalkyl groups, and synthesized and characterized these compounds for supercritical CO2 extraction of heavy metals. In this study, we report the structure of the title compound, (I).

The molecule structure of (I) is shown in Fig. 1. The C8—N1 and C7—C6 bond lengths are 1.417 (4) and 1.439 (4) Å, respectively (Table 1), and agree with the corresponding distances in 2-[(4-hydroxyphenyl)iminomethyl]thiophene [1.422 (2) and 1.447 (3) Å; Kazak et al., 2000] and trans-[4-dimethylaminophenyl)iminomethyl]-N-methylpyridinium para-toluenesulfonate [1.413 (3) and 1.461 Å; Coe et al., 2001]. The N1C7 bond length of 1.276 (4) Å is typical of a double bond, which is similar to the corresponding bond lenghts in N-(2,4-dinitrophenyl)-N-methylhydrazone [1.279 (2) Å; Aygün et al., 1998], 2-salicylideneamino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrite [1.281 (2) Å; Elerman & Elmalı, 1998] and 2-[(4-hydroxyphenyl)iminomethyl]thiophene [1.282 (2) Å; Kazak et al., 2000]. The O1—C5 distance of 1.360 (4) Å is nearly equal to the value of 1.349 (6) Å in 3-tert-butyl-2-hydroxy-5-methoxyazobenzene (Işık et al., 1998). The two aromatic rings have different orientations and the dihedral angle between the rings formed by atoms C1–C6 and C8–C13 is 29.57 (2)°.

There is an intramolecular O1—H1···N1 hydrogen bond and an intermolecular C7—H7···F1A hydrogen bond (Table 2). Both CF3 groups showed rotational disorder.

Experimental top

An ethanol solution of 3,5-bis(trifluoromethyl)aminobenzene (2.29 g/20 ml e thanol) was added dropwise at room temperature to a solution of salicylaldehyde (1.22 g, 0.01 mol) in ethanol (20 ml) and large amounts of a yellow precipitate were formed. The mixture was stirred for 30 min at this temperature and filtered under vacuum. Spectroscopically pure (I) was obtained by crystallization from toluene as pale-yellow needles (yield: 93%, m.p.: 369–371 K); elemental analysis, calculated for C15H9F6N: C 54.05, H 2.70, N 4.20%; found: C 54.34, H 2.78, N 4.19%. 1H NMR (CDCl3, 400 MHz): δ 6.9–7.1 (m, 7H, Ar—H), 8.5 (s, 1H, H—CN), 12.2 (s, 1H, OH). IR (KBr) 3600–3300 (br, Ph—OH), 2950 (H—CN), 1650 (CN), 1600 (Ar—CH). Uv–vis (CHCl3): λ = 240 (ε: 2000), 276 (max., ε: 2927), 346 nm (ε: 1835).

Refinement top

The disordered trifluoromethyl F atoms were refined anisotropically using ADP with distance and angle restraints in two positions.

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and PLATON (Spek, 1997).

Figures top
[Figure 1] Fig. 1. An ORTEPIII (Burnett & Johnson, 1996) drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids for non-H atoms are shown at the 30% probability level. The site-occupancy factors are 0.64 (1) and 0.36 (1) for F1A–F6A and F1B–F6B, respectively.
[Figure 2] Fig. 2. PLATON/PLUTON plot (Spek, 1997), showing part of the hydrogen-bond network and the stacking of molecules. The disordered F atoms with 36% occupancy have been omitted for clarity.
N-[3,5-bis(trifluoromethyl)benzene]-salicylaldimine top
Crystal data top
C15H9F6NOF(000) = 672
Mr = 333.23Dx = 1.586 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 35 reflections
a = 7.509 (1) Åθ = 5–25°
b = 26.634 (2) ŵ = 0.16 mm1
c = 7.854 (1) ÅT = 180 K
β = 117.34 (1)°Plate, yellow
V = 1395.3 (3) Å30.3 × 0.3 × 0.02 mm
Z = 4
Data collection top
Siemens P4
diffractometer
Rint = 0.068
Radiation source: fine-focus sealed tubeθmax = 25.2°, θmin = 3.4°
Graphite monochromatorh = 49
ω scansk = 3031
9212 measured reflectionsl = 99
2508 independent reflections1 standard reflections every 120 min
1400 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.0908P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.062
2508 reflectionsΔρmax = 0.22 e Å3
264 parametersΔρmin = 0.23 e Å3
346 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (3)
Crystal data top
C15H9F6NOV = 1395.3 (3) Å3
Mr = 333.23Z = 4
Monoclinic, P21/aMo Kα radiation
a = 7.509 (1) ŵ = 0.16 mm1
b = 26.634 (2) ÅT = 180 K
c = 7.854 (1) Å0.3 × 0.3 × 0.02 mm
β = 117.34 (1)°
Data collection top
Siemens P4
diffractometer
Rint = 0.068
9212 measured reflections1 standard reflections every 120 min
2508 independent reflections intensity decay: none
1400 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.063346 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.06Δρmax = 0.22 e Å3
2508 reflectionsΔρmin = 0.23 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure was solved by direct methods and refined using full-matrix least squares with all non-H atoms anisotropic. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C120.2074 (4)0.90153 (12)0.1261 (5)0.0490 (8)
C140.0075 (6)0.91051 (14)0.0061 (6)0.0642 (10)
F1A0.1096 (9)0.8692 (2)0.0784 (14)0.116 (4)0.639 (14)
F2A0.0984 (9)0.9350 (5)0.0669 (11)0.138 (5)0.639 (14)
F3A0.0283 (8)0.9355 (4)0.1585 (10)0.132 (4)0.639 (14)
F1B0.0707 (16)0.8904 (7)0.1714 (14)0.109 (6)0.361 (14)
F2B0.1287 (11)0.8926 (6)0.0629 (18)0.102 (5)0.361 (14)
F3B0.0635 (14)0.9572 (3)0.035 (3)0.103 (6)0.361 (14)
C100.5439 (5)0.93086 (12)0.2953 (5)0.0501 (9)
C150.6928 (5)0.97260 (14)0.3501 (6)0.0623 (10)
F4A0.8756 (8)0.9567 (3)0.4029 (13)0.096 (2)0.639 (14)
F5A0.7045 (13)0.9985 (4)0.4971 (9)0.089 (2)0.639 (14)
F6A0.6681 (17)1.0013 (5)0.2131 (15)0.144 (5)0.639 (14)
F4B0.8762 (16)0.9587 (6)0.451 (3)0.149 (7)0.361 (14)
F5B0.637 (4)1.0118 (7)0.410 (4)0.166 (7)0.361 (14)
F6B0.6673 (18)0.9991 (7)0.193 (2)0.087 (5)0.361 (14)
O10.4776 (3)0.69821 (9)0.3629 (4)0.0642 (7)
H10.44960.72770.33200.096*
N10.5228 (4)0.79528 (10)0.3935 (4)0.0493 (7)
C10.9071 (5)0.73333 (14)0.8136 (5)0.0562 (9)
H1A0.97180.76180.88260.067*
C20.9792 (6)0.68696 (15)0.8896 (6)0.0657 (11)
H21.09230.68401.00780.079*
C30.8803 (6)0.64458 (16)0.7871 (6)0.0678 (11)
H30.92790.61290.83770.081*
C40.7136 (5)0.64847 (14)0.6129 (6)0.0635 (10)
H40.64800.61970.54640.076*
C50.6433 (5)0.69580 (13)0.5362 (5)0.0527 (9)
C60.7410 (5)0.73888 (12)0.6373 (5)0.0481 (8)
C70.6716 (5)0.78797 (13)0.5579 (5)0.0503 (9)
H70.73860.81580.63030.060*
C80.4697 (5)0.84496 (12)0.3242 (4)0.0462 (8)
C90.6062 (4)0.88344 (12)0.3683 (5)0.0497 (9)
H90.74140.87740.44800.060*
C110.3427 (5)0.94034 (13)0.1737 (5)0.0531 (9)
H110.30030.97240.12530.064*
C130.2691 (4)0.85405 (13)0.1997 (5)0.0494 (9)
H130.17630.82810.16600.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C120.0446 (18)0.053 (2)0.0483 (19)0.0005 (16)0.0202 (16)0.0031 (16)
C140.058 (2)0.059 (2)0.065 (2)0.0027 (19)0.019 (2)0.004 (2)
F1A0.060 (3)0.080 (4)0.140 (8)0.013 (2)0.013 (4)0.025 (4)
F2A0.071 (4)0.206 (12)0.119 (6)0.044 (7)0.027 (3)0.061 (7)
F3A0.070 (3)0.193 (10)0.099 (5)0.003 (4)0.010 (3)0.067 (6)
F1B0.081 (7)0.134 (14)0.072 (6)0.012 (8)0.002 (5)0.041 (7)
F2B0.046 (4)0.122 (11)0.125 (9)0.004 (6)0.029 (5)0.025 (8)
F3B0.062 (5)0.057 (5)0.158 (14)0.021 (3)0.023 (7)0.003 (5)
C100.0493 (19)0.050 (2)0.0485 (19)0.0072 (16)0.0201 (16)0.0030 (16)
C150.065 (2)0.048 (2)0.068 (2)0.0061 (18)0.025 (2)0.0044 (19)
F4A0.059 (3)0.077 (4)0.174 (6)0.024 (3)0.073 (4)0.038 (4)
F5A0.090 (4)0.090 (5)0.097 (4)0.046 (3)0.053 (3)0.053 (3)
F6A0.172 (8)0.115 (8)0.094 (5)0.089 (5)0.017 (5)0.016 (5)
F4B0.086 (7)0.090 (9)0.145 (9)0.040 (5)0.055 (7)0.071 (7)
F5B0.211 (17)0.107 (11)0.278 (19)0.093 (9)0.197 (16)0.109 (14)
F6B0.055 (6)0.107 (12)0.097 (9)0.003 (7)0.032 (6)0.048 (8)
O10.0539 (15)0.0540 (15)0.0853 (18)0.0043 (11)0.0326 (14)0.0109 (13)
N10.0473 (16)0.0478 (17)0.0591 (18)0.0004 (12)0.0300 (15)0.0010 (14)
C10.058 (2)0.062 (2)0.054 (2)0.0021 (17)0.0300 (18)0.0056 (18)
C20.065 (2)0.077 (3)0.065 (2)0.007 (2)0.038 (2)0.016 (2)
C30.071 (2)0.063 (3)0.086 (3)0.015 (2)0.050 (2)0.023 (2)
C40.064 (2)0.049 (2)0.092 (3)0.0026 (18)0.048 (2)0.006 (2)
C50.0420 (18)0.056 (2)0.068 (2)0.0014 (16)0.0323 (19)0.0015 (19)
C60.0514 (19)0.045 (2)0.060 (2)0.0015 (15)0.0361 (17)0.0002 (16)
C70.0496 (19)0.054 (2)0.056 (2)0.0053 (16)0.0317 (18)0.0051 (17)
C80.0470 (18)0.0478 (19)0.0478 (18)0.0036 (15)0.0250 (16)0.0054 (15)
C90.0403 (17)0.055 (2)0.0520 (19)0.0026 (15)0.0199 (15)0.0017 (17)
C110.060 (2)0.048 (2)0.0524 (19)0.0018 (16)0.0267 (18)0.0000 (16)
C130.0465 (19)0.050 (2)0.0543 (19)0.0090 (15)0.0249 (17)0.0093 (17)
Geometric parameters (Å, º) top
C12—C111.375 (4)N1—C71.276 (4)
C12—C131.379 (5)N1—C81.417 (4)
C12—C141.483 (5)C1—C21.370 (5)
C14—F2A1.257 (6)C1—C61.381 (4)
C14—F1B1.277 (8)C1—H1A0.9300
C14—F3B1.299 (7)C2—C31.387 (5)
C14—F1A1.312 (6)C2—H20.9300
C14—F3A1.315 (6)C3—C41.370 (5)
C14—F2B1.343 (8)C3—H30.9300
C10—C91.377 (4)C4—C51.392 (5)
C10—C111.391 (4)C4—H40.9300
C10—C151.493 (5)C5—C61.397 (5)
C15—F6A1.262 (8)C6—C71.439 (4)
C15—F4B1.289 (10)C7—H70.9300
C15—F5B1.294 (11)C8—C91.377 (4)
C15—F4A1.309 (6)C8—C131.389 (4)
C15—F5A1.313 (7)C9—H90.9300
C15—F6B1.355 (10)C11—H110.9300
O1—C51.360 (4)C13—H130.9300
O1—H10.8200
C11—C12—C13120.7 (3)C2—C1—H1A119.1
C11—C12—C14120.0 (3)C6—C1—H1A119.1
C13—C12—C14119.3 (3)C1—C2—C3118.8 (4)
F1B—C14—F3B106.5 (9)C1—C2—H2120.6
F2A—C14—F1A107.5 (6)C3—C2—H2120.6
F2A—C14—F3A106.8 (7)C4—C3—C2121.2 (4)
F1A—C14—F3A103.3 (6)C4—C3—H3119.4
F1B—C14—F2B104.9 (9)C2—C3—H3119.4
F3B—C14—F2B100.7 (8)C3—C4—C5119.5 (4)
F2A—C14—C12114.1 (4)C3—C4—H4120.3
F1B—C14—C12114.9 (6)C5—C4—H4120.3
F3B—C14—C12115.9 (5)O1—C5—C4117.8 (3)
F1A—C14—C12113.6 (4)O1—C5—C6122.0 (3)
F3A—C14—C12110.8 (4)C4—C5—C6120.1 (3)
F2B—C14—C12112.4 (5)C1—C6—C5118.6 (3)
C9—C10—C11120.5 (3)C1—C6—C7120.8 (3)
C9—C10—C15119.8 (3)C5—C6—C7120.6 (3)
C11—C10—C15119.7 (3)N1—C7—C6123.5 (3)
F4B—C15—F5B116.3 (13)N1—C7—H7118.3
F6A—C15—F4A100.8 (8)C6—C7—H7118.3
F6A—C15—F5A110.8 (8)C9—C8—C13119.3 (3)
F4A—C15—F5A104.7 (5)C9—C8—N1123.6 (3)
F4B—C15—F6B112.0 (10)C13—C8—N1117.1 (3)
F5B—C15—F6B88.8 (15)C8—C9—C10120.4 (3)
F6A—C15—C10114.0 (6)C8—C9—H9119.8
F4B—C15—C10114.2 (7)C10—C9—H9119.8
F5B—C15—C10112.3 (10)C12—C11—C10119.0 (3)
F4A—C15—C10112.9 (4)C12—C11—H11120.5
F5A—C15—C10112.6 (6)C10—C11—H11120.5
F6B—C15—C10110.5 (8)C12—C13—C8120.1 (3)
C5—O1—H1109.5C12—C13—H13119.9
C7—N1—C8119.5 (3)C8—C13—H13119.9
C2—C1—C6121.8 (4)
C11—C12—C14—F2A73.1 (9)C2—C3—C4—C50.7 (5)
C13—C12—C14—F2A107.0 (8)C3—C4—C5—O1179.9 (3)
C11—C12—C14—F1B109.6 (11)C3—C4—C5—C60.6 (5)
C13—C12—C14—F1B70.2 (11)C2—C1—C6—C50.9 (5)
C11—C12—C14—F3B15.4 (12)C2—C1—C6—C7178.2 (3)
C13—C12—C14—F3B164.7 (11)O1—C5—C6—C1179.3 (3)
C11—C12—C14—F1A163.2 (7)C4—C5—C6—C10.1 (5)
C13—C12—C14—F1A16.7 (8)O1—C5—C6—C71.6 (5)
C11—C12—C14—F3A47.5 (8)C4—C5—C6—C7179.0 (3)
C13—C12—C14—F3A132.3 (7)C8—N1—C7—C6177.7 (3)
C11—C12—C14—F2B130.5 (9)C1—C6—C7—N1177.8 (3)
C13—C12—C14—F2B49.6 (9)C5—C6—C7—N11.3 (5)
C9—C10—C15—F6A138.9 (9)C7—N1—C8—C931.6 (5)
C11—C10—C15—F6A42.4 (9)C7—N1—C8—C13150.8 (3)
C9—C10—C15—F4B6.3 (12)C13—C8—C9—C102.2 (5)
C11—C10—C15—F4B174.9 (11)N1—C8—C9—C10179.8 (3)
C9—C10—C15—F5B128.9 (15)C11—C10—C9—C80.9 (5)
C11—C10—C15—F5B49.9 (16)C15—C10—C9—C8177.8 (3)
C9—C10—C15—F4A24.6 (6)C13—C12—C11—C101.0 (5)
C11—C10—C15—F4A156.6 (5)C14—C12—C11—C10178.9 (3)
C9—C10—C15—F5A93.7 (6)C9—C10—C11—C120.6 (5)
C11—C10—C15—F5A85.0 (6)C15—C10—C11—C12179.4 (3)
C9—C10—C15—F6B133.7 (8)C11—C12—C13—C80.3 (5)
C11—C10—C15—F6B47.6 (8)C14—C12—C13—C8179.8 (3)
C6—C1—C2—C30.9 (5)C9—C8—C13—C121.9 (5)
C1—C2—C3—C40.1 (5)N1—C8—C13—C12179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.604 (4)147
C7—H7···F1Ai0.932.483.351 (8)156
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H9F6NO
Mr333.23
Crystal system, space groupMonoclinic, P21/a
Temperature (K)180
a, b, c (Å)7.509 (1), 26.634 (2), 7.854 (1)
β (°) 117.34 (1)
V3)1395.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.3 × 0.3 × 0.02
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9212, 2508, 1400
Rint0.068
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.191, 1.06
No. of reflections2508
No. of parameters264
No. of restraints346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: XSCANS (Siemens, 1991), XSCANS, SHELXTL (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and PLATON (Spek, 1997).

Selected geometric parameters (Å, º) top
C12—C111.375 (4)N1—C81.417 (4)
C12—C131.379 (5)C1—C61.381 (4)
O1—C51.360 (4)C6—C71.439 (4)
N1—C71.276 (4)C8—C91.377 (4)
C11—C12—C13120.7 (3)C1—C6—C7120.8 (3)
C11—C12—C14120.0 (3)C5—C6—C7120.6 (3)
C13—C12—C14119.3 (3)N1—C7—C6123.5 (3)
C7—N1—C8119.5 (3)C9—C8—N1123.6 (3)
O1—C5—C4117.8 (3)C13—C8—N1117.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.604 (4)147
C7—H7···F1Ai0.932.483.351 (8)156
Symmetry code: (i) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds