Download citation
Download citation
link to html
In the title compound, [Zn2(C9H4INO4S)2(H2O)6]·4H2O, the coordination geometry around the ZnII atom is a distorted octahedron, formed by three water mol­ecules, the N and deprotonated O atoms of the quinolinol ring and one of the O atoms of the sulfonate group. In the centrosymmetric binuclear complex, there is a π–π-stacking interaction between the quinolinol rings. The water mol­ecules of crystallization play an important role in the hydrogen-bonding patterns of the three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803001922/ob6211sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803001922/ob6211Isup2.hkl
Contains datablock I

CCDC reference: 198360

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.028
  • wR factor = 0.061
  • Data-to-parameter ratio = 17.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Oxine [8-hydroxyquinoline (HQ)] derivatives are well known analytical reagents and are also known for their anti-amoebic, antibacterial and antifungal activities, which could be correlated to their bidentate chelating ability to the metal. Many metal complexes of HQ have been reported (Palenik, 1964). The crystal structures of 8-hydroxy-7-nitroquinoline-5-sulfonic acid monohydrate (Balasubramanian et al., 1996) and 2-methyl-8-hydroxyquinoline-5-sulfonic acid monohydrate (Merrit et al., 1970) have also been reported. Because of the groups with coordination abilities present on both sides, the sulfoxine ligand is capable of forming dimers. The iodo substitution at the 7-position in the sulfoxine ligand [7-iodo-8-hydroxyquinoline-5-sulfonic acid (ferron)] tends to predominantly result in isomorphic crystal structures with metal ions. Because of its stability, the cage-like dimeric structure is formed rather than the polymeric network. Already both the types of crystal structures have been reported (Petit, Coquerel et al., 1993; Petit, Ammor et al., 1993) in the copper complex of sulfoxine [8-hydroxyquinoline-5-sulfonic acid (HQS)]. From our laboratory, the structures of cobalt complex of ferron (Balasubramanian, 1995), the nickel complex of ferron (Baskar Raj et al., 2003), the lithium complex of HQS (Murugesan et al., 1997), the sodium complex of HQS (Baskar Raj et al., 2002) and the nickel complex of HQS (Baskar Raj et al., 2001) have already been reported. The present study discusses the structure of the title zinc compound, (I).

The asymmetric unit of (I) contains one monomeric unit of [Zn(ferron)(H2O)3] and two water molecules in the lattice. Two inversion-related ligands and two Zn atoms form a cage-like dimer (Fig. 1 and Table 1). The coordination of Zn is a distorted octahedron, the metal atom being surrounded by three water molecules, one of the O atoms of the sulfonate group (O1) and N, O atoms of the oxine ring. In the octahedral geometry, two O atoms of coordinated water molecules (O2W and O3W) and N1, O4 of oxine moiety are occupying the equatorial positions and the sulfonate O atom and one O atom of water molecule (O1W) are lying in axial positions. The Zn—N1, Zn—O and S—O bond distances and the N1—Zn—O4 bite angle [80.56 (9)°] almost agree with those found in nickel complex of ferron (Baskar Raj et al., 2003). In (I), ππ-stacking is observed between the quinolinol rings within the dimer. The centroid-to-centroid interplanar distance is 3.520 Å and the slip angle (angle between the centroid vector and normal to the plane) is 9.45°.

The water molecules and the hetero O atoms play an important role in the formation of hydrogen-bonding patterns (Table 2) and in the making of supramolecular motifs. The non-coordinated O atom (O3) of the sulfonate group is acting as an acceptor to the coordinated water molecule (O2W), forming a six-membered ring within the dimer. The tandem hydrogen bonding between each of the two coordinated water molecules of the adjacent dimeric units forming the R22(4) ring motif (Fig. 2). The O3 atom is also acting as an acceptor to the coordinated water molecule (O1W) of the neighbouring unit. Another O atom of SO3 group (O2) is also involved in hydrogen bonding, one with a lattice water molecule (O4W) and another with a neighbouring coordinated water molecule (O2W). Two coordinated water molecules (O1 and O2) of one dimer donating H atoms to two of the O atoms (O2 and O3) of the sulfonate group of the neighbouring unit is reminescent of the fork-like interactions (Fig. 3) observed in trimethoprim–sulfonate complexes (Baskar Raj et al., 2003). The quinolinol O atom (O4) act as a hydrogen-bonding acceptor to two lattice water molecules O4W and O5W, resulting in two types of hydrogen-bonding patterns. One (O4···H25W—O5W—H15W···O4W···H13W—O3W—Zn) is of intramolecular in nature making an eight-membered ring (Fig. 4). The other (O4···H24W—O4W—H14W···O2) of intermolecular in nature, bridging the neighbouring moieties through the hydrogen-bonded chain. The over all supramolecular architecture consists of parallel supramolecular chains made up of metal atom and O atoms (of sulfonate and water molecules) being linked by aromatic part of the oxine moieties acting as ladders (Fig. 5).

Experimental top

Hot aqueous solution of trimethoprim (obtained as a gift from Shilpa Antibiotics Ltd, 0.072 g) and ferron (Riedel-de-Haen, 0.085 g) were mixed 1:1 molar ratio. Then a hot aqueous solution of ZnSO4·7H2O (S. d. fine Chem. Ltd, 0.072 g) was added to the above solution and warmed over a water for 8 h. After few days of slow evaporation, needle-shaped yellow crystals of (I) separated out from the mother liquor.

Refinement top

H atoms were located from difference fourier maps and their coordinates and isotropic displacement parameters were refined. The C—H and O—H bond lengths are 0.90 (3)–0.96 (4) and 0.72 (5)–0.94 Å, respectively.

Computing details top

Data collection: FEBO (Belleti, 1996); cell refinement: MolEN (Fair, 1990); data reduction: MolEN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 1997); software used to prepare material for publication: PLATON97.

Figures top
[Figure 1] Fig. 1. A view of the dimeric complex of (I), showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The tandem-type of hydrogen-bonding pattern in (I).
[Figure 3] Fig. 3. A view of fork-like hydrogen-bonding interaction in (I).
[Figure 4] Fig. 4. Hydrogen-bonding patterns involving water molecules of crystallization in (I).
[Figure 5] Fig. 5. The supramolecular architecture in (I).
µ-7-iodo-8-hydroxyquinoline-5-sulfonato-κ3N,O:O')bis[triaquazinc(II)] tetrahydrate top
Crystal data top
[Zn2(C9H4INO4S)2(H2O)6]·4H2OF(000) = 1968
Mr = 1009.14Dx = 2.264 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 22.278 (4) Åθ = 3.1–30.1°
b = 10.076 (3) ŵ = 3.93 mm1
c = 13.496 (2) ÅT = 293 K
β = 102.29 (3)°Needle, yellow
V = 2960.1 (12) Å30.31 × 0.26 × 0.23 mm
Z = 4
Data collection top
Philips PW1100
diffractometer
2975 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 30.0°, θmin = 3.1°
ω scansh = 3130
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.303, Tmax = 0.405l = 018
4484 measured reflections1 standard reflections every 100 reflections
4326 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061All H-atom parameters refined
S = 0.90 w = 1/[σ2(Fo2) + (0.0239P)2]
4326 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.91 e Å3
6 restraintsΔρmin = 1.00 e Å3
0 constraints
Crystal data top
[Zn2(C9H4INO4S)2(H2O)6]·4H2OV = 2960.1 (12) Å3
Mr = 1009.14Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.278 (4) ŵ = 3.93 mm1
b = 10.076 (3) ÅT = 293 K
c = 13.496 (2) Å0.31 × 0.26 × 0.23 mm
β = 102.29 (3)°
Data collection top
Philips PW1100
diffractometer
2975 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.303, Tmax = 0.4051 standard reflections every 100 reflections
4484 measured reflections intensity decay: none
4326 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0286 restraints
wR(F2) = 0.061All H-atom parameters refined
S = 0.90Δρmax = 0.91 e Å3
4326 reflectionsΔρmin = 1.00 e Å3
255 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.17705 (1)0.71087 (2)0.06614 (2)0.0269 (1)
Zn0.41345 (2)0.26901 (4)0.09392 (3)0.0233 (1)
S0.39566 (3)0.39551 (7)0.14496 (6)0.0188 (2)
O10.41179 (10)0.2972 (2)0.07545 (16)0.0244 (7)
O1W0.42067 (15)0.2435 (3)0.2478 (2)0.0456 (10)
O20.41769 (10)0.3544 (2)0.25062 (17)0.0265 (7)
O2W0.44958 (15)0.4613 (3)0.0966 (3)0.0504 (10)
O30.41464 (10)0.5299 (2)0.12607 (19)0.0286 (8)
O3W0.50056 (11)0.2119 (3)0.0353 (2)0.0314 (8)
O40.12354 (9)0.4197 (2)0.08536 (17)0.0217 (6)
N10.17920 (11)0.1832 (2)0.12625 (19)0.0182 (7)
C20.20520 (15)0.0648 (3)0.1433 (3)0.0222 (9)
C30.26819 (16)0.0451 (3)0.1554 (3)0.0231 (10)
C40.30531 (15)0.1512 (3)0.1505 (2)0.0215 (9)
C50.31452 (13)0.3990 (3)0.1262 (2)0.0171 (8)
C60.28423 (14)0.5182 (3)0.1085 (2)0.0182 (9)
C70.22047 (13)0.5264 (3)0.0948 (2)0.0167 (8)
C80.18357 (13)0.4162 (3)0.0995 (2)0.0163 (8)
C90.28007 (13)0.2802 (3)0.1326 (2)0.0154 (8)
C100.21560 (13)0.2912 (3)0.1202 (2)0.0147 (8)
O4W0.04219 (13)0.6099 (3)0.1583 (2)0.0363 (9)
O5W0.06764 (14)0.4708 (3)0.3808 (2)0.0354 (9)
H20.3485 (14)0.134 (3)0.164 (2)0.017 (8)*
H30.2832 (13)0.037 (3)0.170 (2)0.014 (8)*
H50.1781 (16)0.005 (4)0.153 (3)0.036 (10)*
H60.3082 (16)0.597 (4)0.106 (3)0.040 (11)*
H11W0.419 (2)0.167 (2)0.284 (3)0.087 (18)*
H12W0.451 (3)0.519 (5)0.041 (3)0.16 (3)*
H13W0.5077 (19)0.189 (4)0.025 (4)0.050 (14)*
H21W0.4191 (19)0.319 (2)0.287 (3)0.058 (14)*
H22W0.4421 (19)0.519 (4)0.152 (2)0.070 (15)*
H23W0.521 (2)0.162 (4)0.061 (4)0.060 (16)*
H14W0.0557 (19)0.672 (4)0.191 (3)0.044 (14)*
H24W0.067 (2)0.564 (5)0.160 (4)0.07 (2)*
H15W0.042 (2)0.521 (5)0.354 (4)0.061 (17)*
H25W0.088 (2)0.503 (5)0.435 (4)0.061 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.0270 (1)0.0134 (1)0.0425 (1)0.0035 (1)0.0126 (1)0.0039 (1)
Zn0.0188 (2)0.0182 (2)0.0325 (2)0.0012 (1)0.0046 (2)0.0036 (2)
S0.0178 (4)0.0188 (4)0.0205 (4)0.0003 (3)0.0059 (3)0.0015 (3)
O10.0249 (12)0.0254 (12)0.0250 (12)0.0048 (10)0.0100 (10)0.0040 (10)
O1W0.074 (2)0.0340 (16)0.0338 (16)0.0054 (15)0.0228 (15)0.0062 (13)
O20.0271 (12)0.0317 (13)0.0186 (12)0.0004 (10)0.0001 (10)0.0016 (10)
O2W0.065 (2)0.0291 (15)0.0455 (18)0.0232 (14)0.0140 (16)0.0166 (14)
O30.0264 (12)0.0205 (12)0.0419 (15)0.0040 (9)0.0141 (11)0.0010 (11)
O3W0.0224 (12)0.0434 (15)0.0290 (14)0.0086 (12)0.0068 (11)0.0028 (14)
O40.0165 (10)0.0159 (10)0.0327 (13)0.0008 (8)0.0054 (9)0.0022 (10)
N10.0208 (13)0.0140 (12)0.0196 (13)0.0018 (10)0.0036 (11)0.0005 (10)
C20.0302 (18)0.0134 (14)0.0228 (17)0.0032 (13)0.0055 (14)0.0009 (13)
C30.0320 (18)0.0118 (14)0.0245 (18)0.0061 (13)0.0039 (14)0.0011 (13)
C40.0232 (16)0.0205 (15)0.0204 (17)0.0067 (13)0.0039 (13)0.0012 (13)
C50.0171 (14)0.0172 (14)0.0172 (15)0.0003 (11)0.0041 (12)0.0009 (12)
C60.0228 (16)0.0153 (14)0.0171 (16)0.0020 (12)0.0053 (13)0.0006 (12)
C70.0197 (15)0.0112 (13)0.0196 (16)0.0025 (11)0.0053 (12)0.0004 (12)
C80.0220 (15)0.0128 (13)0.0145 (15)0.0021 (11)0.0050 (12)0.0001 (11)
C90.0194 (14)0.0160 (14)0.0109 (13)0.0026 (12)0.0032 (11)0.0010 (12)
C100.0200 (14)0.0095 (12)0.0145 (14)0.0008 (11)0.0035 (11)0.0024 (11)
O4W0.0306 (15)0.0353 (16)0.0423 (18)0.0047 (14)0.0063 (13)0.0053 (14)
O5W0.0358 (16)0.0330 (15)0.0357 (17)0.0004 (13)0.0039 (14)0.0022 (13)
Geometric parameters (Å, º) top
I—C72.093 (3)O4W—H14W0.79 (4)
Zn—O12.311 (2)O5W—H25W0.84 (5)
Zn—O1W2.132 (3)O5W—H15W0.79 (5)
Zn—O2W2.101 (3)N1—C101.370 (4)
Zn—O3W2.017 (3)N1—C21.325 (4)
Zn—O4i2.085 (2)C2—C31.392 (5)
Zn—N1i2.073 (3)C3—C41.362 (5)
S—O11.461 (2)C4—C91.416 (4)
S—O21.466 (2)C5—C61.373 (4)
S—O31.457 (2)C5—C91.434 (4)
S—C51.771 (3)C6—C71.395 (4)
O4—C81.311 (4)C7—C81.391 (4)
O1W—H11W0.91 (3)C8—C101.445 (4)
O1W—H21W0.92 (3)C9—C101.415 (4)
O2W—H22W0.93 (3)C2—H50.95 (4)
O2W—H12W0.94 (5)C3—H30.90 (3)
O3W—H23W0.80 (4)C4—H20.96 (3)
O3W—H13W0.83 (5)C6—H60.96 (4)
O4W—H24W0.72 (5)
I···O43.198 (2)C3···C8vi3.503 (5)
I···O4W3.633 (3)C3···C7i3.514 (5)
I···C2ii3.731 (3)C4···O13.137 (4)
I···C6iii3.823 (3)C4···O23.293 (4)
I···C4iv3.808 (3)C4···C8i3.502 (4)
I···O5Wv3.599 (3)C4···Ivi3.808 (3)
I···Iiii4.1042 (13)C5···C2i3.588 (5)
I···H5ii3.09 (4)C6···Iiii3.823 (3)
I···H24W3.34 (5)C6···C3i3.562 (5)
I···H25Wv3.20 (5)C6···C2iv3.341 (5)
I···H6iii3.09 (4)C6···C2i3.556 (5)
Zn···H25Wvi3.44 (5)C7···C3iv3.332 (5)
Zn···H24Wi3.52 (5)C7···C2iv3.591 (5)
S···H22.87 (3)C7···C3i3.514 (5)
S···H21Wvii3.03 (2)C8···C3iv3.503 (5)
S···H22Wvii2.85 (3)C8···C4i3.502 (4)
S···H14Wvi3.18 (4)C9···C10i3.508 (4)
O1···C43.137 (4)C9···C9i3.596 (4)
O1W···O3v2.834 (4)C10···C9i3.508 (4)
O1W···O5Wi2.855 (4)C8···H3iv3.08 (3)
O2···O4Wvi2.813 (4)C8···H25Wv2.85 (5)
O2···C43.293 (4)H2···H25Wvi2.52 (6)
O2···O2Wvii2.753 (4)H2···S2.87 (3)
O2W···O3viii3.135 (4)H2···O5Wvi2.65 (3)
O2W···O2Wviii3.156 (5)H2···H14Wvi2.60 (5)
O2W···O2v2.753 (4)H2···O22.81 (3)
O3···O2Wviii3.135 (4)H2···O12.61 (3)
O3···O1Wvii2.834 (4)H3···C8vi3.08 (3)
O3W···O4Wix2.777 (4)H5···Ixiv3.09 (4)
O3W···O5Wx2.761 (4)H5···O2Wi2.82 (4)
O4···O4W2.947 (4)H6···Iiii3.09 (4)
O4···I3.198 (2)H6···O32.42 (4)
O4···O5Wv2.988 (4)H11W···O5Wi1.97 (3)
O4W···O42.947 (4)H11W···H15Wi2.36 (6)
O4W···I3.633 (3)H12W···O2Wviii2.58 (5)
O4W···O5Wxi2.771 (4)H12W···O32.56 (5)
O4W···O3Wxii2.777 (4)H12W···H12Wviii2.26 (9)
O4W···O2iv2.813 (4)H13W···H14Wix2.27 (7)
O5W···O4vii2.988 (4)H13W···H24Wix2.37 (7)
O5W···O4Wxi2.771 (4)H13W···O4Wix1.97 (5)
O5W···Ivii3.599 (3)H14W···H13Wxii2.27 (7)
O5W···O1Wi2.855 (4)H14W···H2iv2.60 (5)
O5W···O3Wxiii2.761 (4)H14W···O2iv2.04 (4)
O1···H22.61 (3)H14W···Siv3.18 (4)
O2···H22Wvii1.83 (3)H15W···O4W2.79 (5)
O2···H22.81 (3)H15W···H11Wi2.36 (6)
O2···H14Wvi2.04 (4)H15W···H23Wxiii2.27 (7)
O2W···H5i2.82 (4)H15W···O4Wxi2.05 (5)
O2W···H12Wviii2.58 (6)H15W···H24Wxi2.43 (7)
O3···H12W2.56 (5)H21W···O3v1.91 (3)
O3···H62.42 (4)H21W···Sv3.03 (2)
O3···H21Wvii1.91 (3)H22W···O2v1.83 (3)
O4···H24W2.29 (5)H22W···Sv2.85 (3)
O4···H25Wv2.16 (5)H23W···H25Wx2.24 (6)
O4W···H13Wxii1.97 (5)H23W···O5Wx1.96 (4)
O4W···H15W2.79 (5)H23W···H15Wx2.27 (7)
O4W···H15Wxi2.05 (5)H24W···H13Wxii2.37 (7)
O5W···H2iv2.65 (3)H24W···Zni3.52 (5)
O5W···H11Wi1.97 (3)H24W···I3.34 (5)
O5W···H23Wxiii1.96 (4)H24W···O42.29 (5)
C2···C7vi3.591 (5)H24W···H15Wxi2.43 (7)
C2···C5i3.588 (5)H25W···Ivii3.20 (5)
C2···C6i3.556 (5)H25W···O4vii2.16 (5)
C2···C6vi3.341 (5)H25W···C8vii2.85 (5)
C2···Ixiv3.731 (3)H25W···Zniv3.44 (5)
C3···C6i3.562 (5)H25W···H2iv2.52 (6)
C3···C7vi3.332 (5)H25W···H23Wxiii2.24 (6)
O1—Zn—O1W176.67 (11)H14W—O4W—H24W107 (5)
O1—Zn—O2W89.46 (12)H15W—O5W—H25W111 (5)
O1—Zn—O3W82.17 (10)Zni—N1—C2128.6 (2)
O1—Zn—O4i88.14 (9)C2—N1—C10118.9 (3)
O1—Zn—N1i87.41 (10)Zni—N1—C10112.23 (18)
O1W—Zn—O2W89.19 (14)N1—C2—C3122.8 (3)
O1W—Zn—O3W94.70 (12)C2—C3—C4119.3 (3)
O1W—Zn—O4i93.25 (11)C3—C4—C9120.4 (3)
O1W—Zn—N1i95.80 (12)S—C5—C6119.4 (2)
O2W—Zn—O3W85.97 (13)C6—C5—C9119.4 (3)
O2W—Zn—O4i177.50 (13)S—C5—C9121.2 (2)
O2W—Zn—N1i98.63 (11)C5—C6—C7121.6 (3)
O3W—Zn—O4i94.40 (11)C6—C7—C8122.8 (3)
O3W—Zn—N1i168.59 (11)I—C7—C6119.6 (2)
O4i—Zn—N1i80.56 (9)I—C7—C8117.6 (2)
O1—S—O2110.85 (13)O4—C8—C7124.5 (3)
O1—S—O3113.43 (14)C7—C8—C10115.6 (3)
O1—S—C5107.74 (14)O4—C8—C10119.9 (3)
O2—S—O3112.54 (14)C4—C9—C10116.6 (3)
O2—S—C5105.36 (13)C4—C9—C5125.3 (3)
O3—S—C5106.37 (14)C5—C9—C10118.1 (3)
Zn—O1—S140.92 (13)C8—C10—C9122.6 (3)
Zni—O4—C8111.74 (18)N1—C10—C9122.0 (3)
Zn—O1W—H11W129 (2)N1—C10—C8115.4 (3)
Zn—O1W—H21W117 (2)N1—C2—H5115 (2)
H11W—O1W—H21W113 (3)C3—C2—H5122 (2)
Zn—O2W—H12W120 (3)C4—C3—H3122.1 (19)
Zn—O2W—H22W126 (2)C2—C3—H3118.4 (19)
H12W—O2W—H22W103 (3)C3—C4—H2116.4 (18)
Zn—O3W—H13W116 (3)C9—C4—H2123.1 (18)
H13W—O3W—H23W104 (5)C7—C6—H6120 (2)
Zn—O3W—H23W126 (4)C5—C6—H6118 (2)
O2W—Zn—O1—S43.2 (2)O1—S—C5—C954.2 (3)
O3W—Zn—O1—S129.2 (2)O2—S—C5—C6113.6 (2)
O4i—Zn—O1—S136.1 (2)O2—S—C5—C964.2 (2)
N1i—Zn—O1—S55.4 (2)O3—S—C5—C66.0 (3)
O1—Zn—O4i—C8i85.18 (19)O3—S—C5—C9176.1 (2)
O1W—Zn—O4i—C8i97.8 (2)O2—S—O1—Zn169.16 (19)
O3W—Zn—O4i—C8i167.18 (19)O3—S—O1—Zn41.4 (3)
O1—Zn—N1i—C2i89.3 (3)Zni—O4—C8—C7177.8 (2)
O1—Zn—N1i—C10i85.13 (19)Zni—O4—C8—C101.2 (3)
O1W—Zn—N1i—C2i89.8 (3)C10—N1—C2—C30.0 (5)
O1W—Zn—N1i—C10i95.8 (2)Zni—N1—C2—C3174.1 (3)
O2W—Zn—N1i—C2i0.3 (3)C2—N1—C10—C8178.8 (3)
O2W—Zn—N1i—C10i174.2 (2)Zni—N1—C10—C83.8 (3)
O4i—Zn—O3W—H13W67 (3)C2—N1—C10—C90.6 (4)
O4i—Zn—O3W—H23W66 (4)Zni—N1—C10—C9175.7 (2)
N1i—Zn—O1W—H21W72 (3)N1—C2—C3—C40.5 (6)
O1—Zn—O2W—H12W10 (4)C2—C3—C4—C90.4 (5)
O1—Zn—O2W—H22W147 (3)C3—C4—C9—C5179.8 (3)
O1W—Zn—O2W—H12W173 (4)C3—C4—C9—C100.2 (4)
O1W—Zn—O2W—H22W36 (3)S—C5—C9—C10177.9 (2)
O3W—Zn—O2W—H12W92 (4)S—C5—C6—C7179.0 (2)
O3W—Zn—O2W—H22W130 (3)C9—C5—C6—C71.1 (4)
N1i—Zn—O2W—H12W77 (4)S—C5—C9—C42.1 (4)
O2W—Zn—O1W—H11W164 (4)C6—C5—C9—C4180.0 (3)
O2W—Zn—O1W—H21W27 (3)C6—C5—C9—C100.0 (4)
O3W—Zn—O1W—H11W78 (4)C5—C6—C7—I179.2 (2)
O3W—Zn—O1W—H21W112 (3)C5—C6—C7—C81.0 (4)
O4i—Zn—O1W—H11W16 (4)C6—C7—C8—O4178.8 (3)
O4i—Zn—O1W—H21W153 (3)I—C7—C8—O41.3 (4)
N1i—Zn—O1W—H11W97 (4)I—C7—C8—C10179.55 (19)
O2W—Zn—O3W—H23W116 (4)C6—C7—C8—C100.3 (4)
N1i—Zn—O2W—H22W60 (3)O4—C8—C10—C9177.7 (3)
O1—Zn—O3W—H13W20 (3)O4—C8—C10—N11.8 (4)
O1—Zn—O3W—H23W154 (4)C7—C8—C10—N1179.1 (2)
O1W—Zn—O3W—H13W161 (3)C7—C8—C10—C91.4 (4)
O1W—Zn—O3W—H23W28 (4)C5—C9—C10—C81.3 (4)
O2W—Zn—O3W—H13W110 (3)C4—C9—C10—N10.7 (4)
C5—S—O1—Zn76.0 (2)C4—C9—C10—C8178.7 (2)
O1—S—C5—C6128.0 (2)C5—C9—C10—N1179.3 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z; (iii) x+1/2, y+3/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x, y+1, z+1/2; (viii) x+1, y+1, z; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z1/2; (xi) x, y, z+1/2; (xii) x1/2, y+1/2, z; (xiii) x1/2, y+1/2, z+1/2; (xiv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O5Wi0.91 (3)1.97 (3)2.855 (4)163 (4)
O2W—H12W···O30.94 (5)2.56 (5)3.333 (5)140 (5)
O2W—H12W···O2Wviii0.94 (5)2.58 (5)3.156 (5)120 (5)
O3W—H13W···O4Wix0.83 (5)1.97 (5)2.777 (4)165 (4)
O4W—H14W···O2iv0.79 (4)2.04 (4)2.813 (4)168 (4)
O5W—H15W···O4Wxi0.79 (5)2.05 (5)2.771 (4)151 (5)
O1W—H21W···O3v0.92 (3)1.91 (3)2.834 (4)177 (4)
O2W—H22W···O2v0.93 (3)1.83 (3)2.753 (4)170 (4)
O3W—H23W···O5Wx0.80 (4)1.96 (4)2.761 (4)176 (4)
O4W—H24W···O40.72 (5)2.29 (5)2.947 (4)152 (5)
O5W—H25W···O4vii0.84 (5)2.16 (5)2.988 (4)168 (5)
C6—H6···O30.96 (4)2.42 (4)2.867 (4)108 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z1/2; (vii) x, y+1, z+1/2; (viii) x+1, y+1, z; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z1/2; (xi) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C9H4INO4S)2(H2O)6]·4H2O
Mr1009.14
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)22.278 (4), 10.076 (3), 13.496 (2)
β (°) 102.29 (3)
V3)2960.1 (12)
Z4
Radiation typeMo Kα
µ (mm1)3.93
Crystal size (mm)0.31 × 0.26 × 0.23
Data collection
DiffractometerPhilips PW1100
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.303, 0.405
No. of measured, independent and
observed [I > 2σ(I)] reflections
4484, 4326, 2975
Rint0.021
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.061, 0.90
No. of reflections4326
No. of parameters255
No. of restraints6
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.91, 1.00

Computer programs: FEBO (Belleti, 1996), MolEN (Fair, 1990), MolEN, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), PLATON97 (Spek, 1997), PLATON97.

Selected geometric parameters (Å, º) top
I—C72.093 (3)S—O11.461 (2)
Zn—O12.311 (2)S—O21.466 (2)
Zn—O1W2.132 (3)S—O31.457 (2)
Zn—O2W2.101 (3)S—C51.771 (3)
Zn—O3W2.017 (3)O4—C81.311 (4)
Zn—O4i2.085 (2)N1—C101.370 (4)
Zn—N1i2.073 (3)N1—C21.325 (4)
O1—Zn—O1W176.67 (11)O2—S—O3112.54 (14)
O1—Zn—O2W89.46 (12)O2—S—C5105.36 (13)
O1—Zn—O3W82.17 (10)O3—S—C5106.37 (14)
O1—Zn—O4i88.14 (9)Zn—O1—S140.92 (13)
O1—Zn—N1i87.41 (10)Zni—O4—C8111.74 (18)
O1W—Zn—O2W89.19 (14)Zni—N1—C2128.6 (2)
O1W—Zn—O3W94.70 (12)C2—N1—C10118.9 (3)
O1W—Zn—O4i93.25 (11)Zni—N1—C10112.23 (18)
O1W—Zn—N1i95.80 (12)N1—C2—C3122.8 (3)
O2W—Zn—O3W85.97 (13)S—C5—C6119.4 (2)
O2W—Zn—O4i177.50 (13)S—C5—C9121.2 (2)
O2W—Zn—N1i98.63 (11)I—C7—C6119.6 (2)
O3W—Zn—O4i94.40 (11)I—C7—C8117.6 (2)
O3W—Zn—N1i168.59 (11)O4—C8—C7124.5 (3)
O4i—Zn—N1i80.56 (9)O4—C8—C10119.9 (3)
O1—S—O2110.85 (13)N1—C10—C9122.0 (3)
O1—S—O3113.43 (14)N1—C10—C8115.4 (3)
O1—S—C5107.74 (14)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O5Wi0.91 (3)1.97 (3)2.855 (4)163 (4)
O2W—H12W···O30.94 (5)2.56 (5)3.333 (5)140 (5)
O2W—H12W···O2Wii0.94 (5)2.58 (5)3.156 (5)120 (5)
O3W—H13W···O4Wiii0.83 (5)1.97 (5)2.777 (4)165 (4)
O4W—H14W···O2iv0.79 (4)2.04 (4)2.813 (4)168 (4)
O5W—H15W···O4Wv0.79 (5)2.05 (5)2.771 (4)151 (5)
O1W—H21W···O3vi0.92 (3)1.91 (3)2.834 (4)177 (4)
O2W—H22W···O2vi0.93 (3)1.83 (3)2.753 (4)170 (4)
O3W—H23W···O5Wvii0.80 (4)1.96 (4)2.761 (4)176 (4)
O4W—H24W···O40.72 (5)2.29 (5)2.947 (4)152 (5)
O5W—H25W···O4viii0.84 (5)2.16 (5)2.988 (4)168 (5)
C6—H6···O30.96 (4)2.42 (4)2.867 (4)108 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1, z; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x, y, z+1/2; (vi) x, y+1, z1/2; (vii) x+1/2, y+1/2, z1/2; (viii) x, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds