Download citation
Download citation
link to html
The title compound, C12H10F3NO2, also known as coumarin 500, exhibits a planar coumarin ring system with an ethyl group essentially perpendicular to it. The mol­ecules form layers, which are stacked along the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803000709/om6124sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803000709/om6124Isup2.hkl
Contains datablock I

CCDC reference: 204687

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.062
  • wR factor = 0.168
  • Data-to-parameter ratio = 17.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 30.02 From the CIF: _reflns_number_total 3126 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3302 Completeness (_total/calc) 94.67% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The title compound, (I), a laser dye aminocoumarin compound, has been found to be very useful with various laser pump sources exhibiting a lasing maximum in the range 470–522 nm (Bos, 1981; Alcock et al., 1978; Eschrich & Morgan, 1985; Gunthals & Nibler, 1979). Bond lengths and angles in the rigid coumarin ring system (Fig. 1) are similar to those observed in the structurally related 7-amino (coumarin 151 or 490; Selladauri & Subramanian, 1992), 7-dimethylamino polymorphs (coumarin 152 A and 152B; Jasinski & Paight, 1994; Chinnakali et al., 1990), and 7-diethylamino (coumarin 466; Yufit et al., 1991), as well as the −6-methyl-7-dimethylamino (Coumarin 307; Chinnakali et al., 1992) −4-trifluoromethyl coumarin molecules except for C14A—C15A, C14B—C15B [1.510 (8) and 1.515 (17) Å] which has disorder on C15 and has been modeled with a restrained C14—C15 bond length (1.52 Å). The benzene and pyrone rings are planar (r.m.s. deviation = 0.0012 and 0.0137) and the angle between the least-squares planes of the rings is 0.65 (18)°.

The amino N atom, N13, trifluoromethyl carbon, C12, and carboxyl oxygen, O11, all extend from the coumarin ring in a planar fashion, with maximum deviations of −0.013 (4), 0.069 (5) and 0.096 (4) Å, respectively. The ethyl group is essentially perpendicular to the plane of the coumarin ring [C7—N13—C14A—C15A = −84.8 (7)° and C7—N13—C14B—C15B = −166.9 (13)°].

A packing diagram of the molecule (Fig. 2) indicates that the asymmetric units are stacked in layers along the c axis, with the parallel least-squares planes of the coumarin rings perpendicular to the axis and a closest contact interlayer spacing of 3.64 (2) Å. Intermolecular hydrogen-bonding interactions are outlined in Table 1.

In three of the four of the structurally related aminocoumarin systems mentioned earlier (coumarin 151, 152 A and 152B, and 307) crystallization also occurs in the triclinic (P1) space group, while coumarin 466 crystallizes in the P21/n space group. In all of these systems, the molecules stack with the asymmetric least-squares planes of the coumarin rings in a similar parallel fashion to that of the title compound.

Experimental top

Coumarin 500 was crystallized as received (Exiton Inc.) by slow evaporation in acetonitrile.

Refinement top

The H atoms on C3, C5, C6, C8 and N13 were included in their calculated positions as riding atoms. Distance and angle restraints were applied to the ethyl H atoms on the disordered C14 and C15 atoms.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1998); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN ((Molecular Structure Corporation, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) molecular drawing of the title compound, showing ellipsoids at the 50% probability level and the atomic numbering scheme.
[Figure 2] Fig. 2. ORTEPII (Johnson, 1976) packing diagram (ideal spheres) of the title compound, viewed down the c axis.
7-ethylamino-4-trifluoromethyl coumarin top
Crystal data top
C12H10F3NO2Z = 2
Mr = 257.21F(000) = 264
Triclinic, P1Dx = 1.521 Mg m3
a = 10.567 (6) ÅMo Kα radiation, λ = 0.71069 Å
b = 11.856 (2) ÅCell parameters from 20 reflections
c = 4.6321 (11) Åθ = 30.2–39.4°
α = 93.303 (18)°µ = 0.14 mm1
β = 100.25 (3)°T = 296 K
γ = 99.14 (3)°Needle, colorless
V = 561.6 (4) Å30.90 × 0.30 × 0.10 mm
Data collection top
Rigaku AFC-6S
diffractometer
965 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 30.0°, θmin = 2.9°
2θ/ω scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 1616
Tmin = 0.887, Tmax = 0.987l = 66
3292 measured reflections3 standard reflections every 150 reflections
3126 independent reflections intensity decay: 2.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.0477P)2]
where P = (Fo2 + 2Fc2)/3
3126 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.19 e Å3
Crystal data top
C12H10F3NO2γ = 99.14 (3)°
Mr = 257.21V = 561.6 (4) Å3
Triclinic, P1Z = 2
a = 10.567 (6) ÅMo Kα radiation
b = 11.856 (2) ŵ = 0.14 mm1
c = 4.6321 (11) ÅT = 296 K
α = 93.303 (18)°0.90 × 0.30 × 0.10 mm
β = 100.25 (3)°
Data collection top
Rigaku AFC-6S
diffractometer
965 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.061
Tmin = 0.887, Tmax = 0.9873 standard reflections every 150 reflections
3292 measured reflections intensity decay: 2.2%
3126 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0622 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.20 e Å3
3126 reflectionsΔρmin = 0.19 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.9049 (2)1.03223 (18)1.2323 (5)0.0730 (7)
F20.8126 (2)1.01490 (17)0.7811 (4)0.0735 (7)
F30.7054 (2)1.05216 (17)1.1149 (5)0.0733 (7)
O10.6623 (2)0.63630 (18)1.1197 (5)0.0518 (6)
O110.8178 (2)0.6369 (2)1.5052 (5)0.0676 (8)
N130.3057 (3)0.6034 (3)0.3366 (6)0.0619 (9)
H130.28540.52500.38260.074*
C20.7702 (3)0.6919 (3)1.3156 (8)0.0506 (9)
C30.8152 (3)0.8090 (3)1.2752 (7)0.0501 (9)
H3A0.89170.84811.39420.060*
C40.7484 (3)0.8644 (3)1.0654 (7)0.0443 (8)
C50.5556 (4)0.8521 (3)0.6407 (7)0.0522 (9)
H5A0.57770.92880.60770.063*
C60.4490 (3)0.7871 (3)0.4675 (7)0.0512 (9)
H6A0.39980.82020.31920.061*
C70.4106 (3)0.6711 (3)0.5058 (7)0.0461 (9)
C80.4869 (3)0.6239 (3)0.7312 (7)0.0488 (9)
H8A0.46450.54730.76450.059*
C90.5939 (3)0.6909 (3)0.9018 (7)0.0424 (8)
C100.6337 (3)0.8064 (3)0.8684 (7)0.0406 (8)
C120.7930 (4)0.9901 (3)1.0496 (8)0.0548 (10)
C14A0.2146 (7)0.6327 (6)0.0982 (17)0.050 (2)0.725 (8)
H14A0.17650.56450.03360.060*0.725 (8)
H14B0.26010.68760.01180.060*0.725 (8)
C15A0.1072 (7)0.6833 (7)0.2058 (16)0.091 (3)0.725 (8)
H15A0.05100.70650.04160.137*0.725 (8)
H15B0.14490.74870.34350.137*0.725 (8)
H15C0.05740.62690.30080.137*0.725 (8)
C14B0.206 (2)0.6776 (14)0.149 (6)0.071 (8)0.275 (8)
H14C0.18580.73880.27300.086*0.275 (8)
H14D0.23960.70920.01570.086*0.275 (8)
C15B0.0882 (15)0.5834 (16)0.048 (4)0.093 (7)0.275 (8)
H15D0.03130.60630.11500.140*0.275 (8)
H15E0.04220.57000.20740.140*0.275 (8)
H15F0.11690.51430.01120.140*0.275 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0799 (16)0.0610 (13)0.0660 (14)0.0076 (11)0.0007 (12)0.0059 (11)
F20.1062 (18)0.0621 (14)0.0498 (13)0.0040 (12)0.0229 (12)0.0100 (10)
F30.0953 (17)0.0525 (13)0.0788 (15)0.0264 (12)0.0225 (13)0.0048 (11)
O10.0550 (15)0.0466 (14)0.0512 (14)0.0084 (12)0.0011 (12)0.0121 (12)
O110.0688 (18)0.0682 (17)0.0622 (17)0.0166 (14)0.0080 (13)0.0259 (14)
N130.062 (2)0.060 (2)0.057 (2)0.0054 (17)0.0039 (17)0.0165 (16)
C20.050 (2)0.049 (2)0.054 (2)0.0126 (18)0.0107 (19)0.0074 (18)
C30.050 (2)0.050 (2)0.047 (2)0.0049 (17)0.0045 (17)0.0013 (16)
C40.052 (2)0.043 (2)0.0411 (19)0.0112 (17)0.0165 (17)0.0040 (16)
C50.065 (2)0.045 (2)0.052 (2)0.0170 (19)0.0175 (19)0.0132 (17)
C60.051 (2)0.057 (2)0.048 (2)0.0171 (19)0.0043 (18)0.0178 (18)
C70.045 (2)0.048 (2)0.045 (2)0.0052 (17)0.0092 (17)0.0089 (16)
C80.055 (2)0.045 (2)0.048 (2)0.0106 (18)0.0091 (18)0.0139 (17)
C90.044 (2)0.050 (2)0.0366 (19)0.0158 (17)0.0077 (16)0.0102 (16)
C100.048 (2)0.0369 (19)0.0409 (19)0.0099 (16)0.0135 (17)0.0108 (15)
C120.062 (3)0.053 (2)0.047 (2)0.004 (2)0.010 (2)0.0004 (18)
C14A0.049 (4)0.042 (4)0.059 (4)0.008 (3)0.009 (3)0.011 (3)
C15A0.059 (5)0.116 (7)0.105 (6)0.030 (5)0.016 (4)0.014 (5)
C14B0.072 (15)0.031 (11)0.096 (16)0.013 (10)0.025 (12)0.000 (10)
C15B0.052 (11)0.105 (15)0.105 (15)0.010 (10)0.019 (9)0.028 (12)
Geometric parameters (Å, º) top
F1—C121.331 (4)C6—C71.402 (5)
F2—C121.338 (4)C6—H6A0.9300
F3—C121.334 (4)C7—C81.401 (4)
O1—C21.372 (4)C8—C91.363 (4)
O1—C91.387 (4)C8—H8A0.9303
O11—C21.209 (4)C9—C101.392 (4)
N13—C71.350 (4)C14A—C15A1.510 (8)
N13—C14A1.427 (8)C14A—H14A0.9700
N13—C14B1.64 (2)C14A—H14B0.9700
N13—H130.9650C15A—H15A0.9600
C2—C31.429 (5)C15A—H15B0.9600
C3—C41.360 (4)C15A—H15C0.9600
C3—H3A0.9301C14B—C15B1.515 (17)
C4—C101.430 (4)C14B—H14C0.9700
C4—C121.500 (5)C14B—H14D0.9700
C5—C61.356 (5)C15B—H15D0.9600
C5—C101.409 (4)C15B—H15E0.9600
C5—H5A0.9306C15B—H15F0.9600
C2—O1—C9122.7 (3)C9—C10—C4116.9 (3)
C7—N13—C14A128.7 (4)C5—C10—C4127.6 (3)
C7—N13—C14B112.5 (6)F1—C12—F3106.5 (3)
C14A—N13—C14B21.0 (8)F1—C12—F2105.6 (3)
C7—N13—H13117.7F3—C12—F2106.3 (3)
C14A—N13—H13113.5F1—C12—C4113.5 (3)
C14B—N13—H13126.9F3—C12—C4111.8 (3)
O11—C2—O1116.8 (3)F2—C12—C4112.6 (3)
O11—C2—C3126.5 (3)N13—C14A—C15A111.6 (6)
O1—C2—C3116.7 (3)N13—C14A—H14A109.3
C4—C3—C2121.3 (3)C15A—C14A—H14A109.3
C4—C3—H3A119.3N13—C14A—H14B109.3
C2—C3—H3A119.4C15A—C14A—H14B109.3
C3—C4—C10121.3 (3)H14A—C14A—H14B108.0
C3—C4—C12119.2 (3)C14A—C15A—H15A109.5
C10—C4—C12119.5 (3)C14A—C15A—H15B109.5
C6—C5—C10121.7 (3)H15A—C15A—H15B109.5
C6—C5—H5A119.0C14A—C15A—H15C109.5
C10—C5—H5A119.3H15A—C15A—H15C109.5
C5—C6—C7121.8 (3)H15B—C15A—H15C109.5
C5—C6—H6A119.3C15B—C14B—N1399.5 (12)
C7—C6—H6A118.9C15B—C14B—H14C111.9
N13—C7—C8119.0 (3)N13—C14B—H14C111.9
N13—C7—C6123.5 (3)C15B—C14B—H14D111.9
C8—C7—C6117.5 (3)N13—C14B—H14D111.9
C9—C8—C7119.7 (3)H14C—C14B—H14D109.6
C9—C8—H8A120.2C14B—C15B—H15D109.5
C7—C8—H8A120.1C14B—C15B—H15E109.5
C8—C9—O1115.1 (3)H15D—C15B—H15E109.5
C8—C9—C10123.9 (3)C14B—C15B—H15F109.5
O1—C9—C10121.0 (3)H15D—C15B—H15F109.5
C9—C10—C5115.6 (3)H15E—C15B—H15F109.5
C9—O1—C2—O11176.4 (3)O1—C9—C10—C5179.5 (3)
C9—O1—C2—C33.6 (4)C8—C9—C10—C4179.9 (3)
O11—C2—C3—C4175.5 (3)O1—C9—C10—C40.9 (4)
O1—C2—C3—C44.5 (5)C6—C5—C10—C90.1 (5)
C2—C3—C4—C102.7 (5)C6—C5—C10—C4179.6 (3)
C2—C3—C4—C12174.6 (3)C3—C4—C10—C90.1 (5)
C10—C5—C6—C70.1 (5)C12—C4—C10—C9177.3 (3)
C14A—N13—C7—C8179.7 (4)C3—C4—C10—C5179.5 (3)
C14B—N13—C7—C8164.1 (11)C12—C4—C10—C53.2 (5)
C14A—N13—C7—C60.9 (7)C3—C4—C12—F16.4 (5)
C14B—N13—C7—C616.5 (12)C10—C4—C12—F1176.3 (3)
C5—C6—C7—N13179.5 (4)C3—C4—C12—F3114.1 (4)
C5—C6—C7—C80.1 (5)C10—C4—C12—F363.2 (4)
N13—C7—C8—C9179.3 (3)C3—C4—C12—F2126.4 (3)
C6—C7—C8—C90.2 (5)C10—C4—C12—F256.3 (4)
C7—C8—C9—O1179.6 (3)C7—N13—C14A—C15A84.9 (7)
C7—C8—C9—C100.4 (5)C14B—N13—C14A—C15A41 (3)
C2—O1—C9—C8178.2 (3)C7—N13—C14B—C15B166.9 (13)
C2—O1—C9—C101.0 (4)C14A—N13—C14B—C15B48.9 (19)
C8—C9—C10—C50.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O11i0.962.193.124 (4)163
C8—H8A···O1i0.932.513.401 (4)161
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC12H10F3NO2
Mr257.21
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.567 (6), 11.856 (2), 4.6321 (11)
α, β, γ (°)93.303 (18), 100.25 (3), 99.14 (3)
V3)561.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.90 × 0.30 × 0.10
Data collection
DiffractometerRigaku AFC-6S
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.887, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
3292, 3126, 965
Rint0.061
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.168, 0.90
No. of reflections3126
No. of parameters182
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1998), MSC/AFC Diffractometer Control Software, TEXSAN ((Molecular Structure Corporation, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), TEXSAN.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O11i0.962.193.124 (4)163
C8—H8A···O1i0.932.513.401 (4)161
Symmetry code: (i) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds