Download citation
Download citation
link to html
The absolute configuration of the enantiopure, axially chiral title compound, C30H26Br2N2O2, has been determined. The mol­ecule has approximate C2 symmetry and intramolecular O—H...N hydrogen bonds occur within each of the imine side chains of the mol­ecule. The planes of the bi­phenyl aromatic rings are bent significantly from the axis of the central C—C bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803004343/bt6242sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803004343/bt6242Isup2.hkl
Contains datablock I

CCDC reference: 209907

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.048
  • wR factor = 0.105
  • Data-to-parameter ratio = 18.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.55 From the CIF: _reflns_number_total 6049 Count of symmetry unique reflns 3437 Completeness (_total/calc) 176.00% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2612 Fraction of Friedel pairs measured 0.760 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

Axially chiral compounds containing a biphenyl moiety have been used extensively as chiral auxiliaries for asymmetric synthesis (Schmid et al., 1988), and we have been using some new axially chiral diimine ligands in asymmetric catalysis (Keller & Rippert, 1999). The title compound, (I), was synthesized by a condensation reaction between enantiomerically pure (P)-6,6'-dimethyl-1,1'-biphenyl-2,2'-dimethylamine and 5-bromosalicylealdehyde. The structure of (I) was determined in order to confirm the absolute configuration of the chiral axis. With this structure in hand, the correlation between the Cotton effect displayed by the CD-spectrum of (I) and those of related biphenyl compounds that we have synthesized could then be used to deduce the absolute configurations of these latter compounds (Keller & Rippert, 1999).

The refined value of the absolute structure parameter [0.013 (9); Flack & Bernardinelli, 2000] unambiguously confirmed that the title compound is enantiopure and that the chiral axis has the P-configuration. The angle between the planes of the two phenyl rings of the 1,1'-biphenyl moiety is 79.88 (14)°, where the acute angle is subtended by the two imine substituents. The ring planes, particularly that defined by C7–C12, are bent slightly away from the C1—C7 axis, so that neither atom C4 nor C10 lie on the continuation of this axis. Atoms C7 and C10 lie 0.104 (7) and 0.294 (12) Å, respectively, from the mean plane through the ring defined by atoms C1–C6, while atoms C1 and C4 lie 0.026 (8) and 0.036 (12) Å, respectively, from the mean plane through the ring defined by atoms C7–C12. An analysis of the conformations adopted by the biphenyl moieties in 682 error-free ordered organic structures stored in the Cambridge Structural Database (Version 5.24 of November, 2002; Allen, 2002) indicated that the bending of the ring planes away from the C1—C7 axis follows a normal distribution pattern with no or very little deviation being displayed by the largest proportion of the structures, but that deviations of the magnitude observed for (I) are also quite common.

The imine groups are almost coplanar with their adjacent 5-bromo-2-hydroxyphenyl groups. The r.m.s deviation of atoms N1, O1, Br1 and C16–C22 from their mean plane is 0.022 Å, with the maximum deviation being 0.041 (3) Å for atom N1. This planar system makes an angle of 76.84 (12)° with the plane of the adjacent phenyl ring defined by atoms C1–C6. In the other corresponding phenylimine moiety, the r.m.s. deviation of the constituent atoms from their mean plane is 0.020 Å, with the maximum deviation being 0.044 (3) Å for atom N2, and the plane makes an angle of 78.45 (11)° with the plane of the adjacent phenyl ring defined by atoms C7–C12. The planes of the phenylimine moieties lie such that the O···Br axes are almost parallel to the biphenyl C4···C10 axis. When viewed along the C4···C10 axis, the molecule has a distinct `W' conformation. The molecule has approximate C2 symmetry about an axis passing perpendicularly through the mid-point of the C1—C7 bond. The r.m.s. deviation of the atoms of the molecule from perfect C2 symmetry is 0.158 Å. Within each phenylimine moiety, the hydroxy group forms an intramolecular O—H···N hydrogen bond with the imine N atom (Table 1), thereby creating a six-membered loop which has a graph-set motif of S(6) (Bernstein et al., 1995).

Experimental top

The synthesis of the title compound has been described by Keller & Rippert (1999); m.p. 360 K. Spectroscopic analysis: [α]25D −20° (c 1.05, ethanol); CD spectrum (c 3.45 × 10−5, ethanol, λ, nm): 217 (−26.5), 235 (26.9), 254 (9.8), 263 (7.9), 318 (0.8), 349 (−0.25). Suitable crystals were obtained by cooling a saturated solution in ethanol to 273 K.

Refinement top

The hydroxy H atoms were located in a difference Fourier map and their positions were refined freely along with individual isotropic displacement parameters. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
(-)-(P)—N,N'-bis[(5-bromo-2-hydroxyphenyl)methylidene]- 6,6'-dimethyl-1,1'-biphenyl-2,2'-dimethanamine top
Crystal data top
C30H26Br2N2O2Dx = 1.534 Mg m3
Mr = 606.35Melting point: 360 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 24 reflections
a = 17.496 (5) Åθ = 17.0–19.5°
b = 18.590 (2) ŵ = 3.12 mm1
c = 8.074 (7) ÅT = 173 K
V = 2626 (2) Å3Prism, yellow
Z = 40.38 × 0.28 × 0.23 mm
F(000) = 1224
Data collection top
Rigaku AFC-5R
diffractometer
3460 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anode generatorRint = 0.047
Graphite monochromatorθmax = 27.6°, θmin = 2.6°
ω–2θ scansh = 2222
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 2424
Tmin = 0.384, Tmax = 0.632l = 1010
8236 measured reflections3 standard reflections every 150 reflections
6049 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom & difmap
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0382P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.002
6049 reflectionsΔρmax = 0.41 e Å3
336 parametersΔρmin = 0.59 e Å3
0 restraintsAbsolute structure: Flack & Bernardinelli (2000); 2630 Friedel pairs
Primary atom site location: heavy-atom methodAbsolute structure parameter: 0.013 (9)
Crystal data top
C30H26Br2N2O2V = 2626 (2) Å3
Mr = 606.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 17.496 (5) ŵ = 3.12 mm1
b = 18.590 (2) ÅT = 173 K
c = 8.074 (7) Å0.38 × 0.28 × 0.23 mm
Data collection top
Rigaku AFC-5R
diffractometer
3460 reflections with I > 2σ(I)
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
Rint = 0.047
Tmin = 0.384, Tmax = 0.6323 standard reflections every 150 reflections
8236 measured reflections intensity decay: none
6049 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106Δρmax = 0.41 e Å3
S = 0.98Δρmin = 0.59 e Å3
6049 reflectionsAbsolute structure: Flack & Bernardinelli (2000); 2630 Friedel pairs
336 parametersAbsolute structure parameter: 0.013 (9)
0 restraints
Special details top

Experimental. Solvent used: EtOH Crystal mount: glued on a glass fibre

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

15.8843 (0.0149) x + 7.6353 (0.0146) y + 0.6776 (0.0091) z = 12.9665 (0.0119)

* 0.0412 (0.0032) N1 * −0.0381 (0.0035) C16 * −0.0108 (0.0042) C17 * −0.0020 (0.0044) C18 * 0.0105 (0.0040) C19 * 0.0106 (0.0041) C20 * 0.0026 (0.0042) C21 * 0.0216 (0.0041) C22 * −0.0239 (0.0031) O1 * −0.0116 (0.0023) Br1

Rms deviation of fitted atoms = 0.0216

−8.1003 (0.0298) x + 11.1895 (0.0276) y − 5.2531 (0.0121) z = 0.7531 (0.0316)

Angle to previous plane (with approximate e.s.d.) = 76.84 (0.12)

* 0.0038 (0.0031) C1 * −0.0069 (0.0031) C2 * 0.0005 (0.0032) C3 * 0.0093 (0.0032) C4 * −0.0125 (0.0031) C5 * 0.0059 (0.0031) C6 0.1042 (0.0070) C7 0.2939 (0.0116) C10

Rms deviation of fitted atoms = 0.0075

13.0973 (0.0249) x + 11.5857 (0.0292) y − 1.8268 (0.0163) z = 15.5224 (0.0176)

Angle to previous plane (with approximate e.s.d.) = 79.88 (0.14)

* −0.0028 (0.0031) C7 * −0.0030 (0.0033) C8 * 0.0082 (0.0035) C9 * −0.0077 (0.0036) C10 * 0.0019 (0.0036) C11 * 0.0034 (0.0032) C12 − 0.0261 (0.0075) C1 − 0.0363 (0.0123) C4

Rms deviation of fitted atoms = 0.0052

13.3795 (0.0188) x − 7.8018 (0.0157) y + 3.9475 (0.0076) z = 1.8157 (0.0207)

Angle to previous plane (with approximate e.s.d.) = 78.45 (0.11)

* 0.0436 (0.0031) N2 * −0.0234 (0.0034) C24 * −0.0198 (0.0042) C25 * −0.0042 (0.0044) C26 * 0.0019 (0.0041) C27 * 0.0101 (0.0041) C28 * −0.0143 (0.0042) C29 * −0.0117 (0.0038) C30 * −0.0046 (0.0033) O2 * 0.0225 (0.0023) Br2

Rms deviation of fitted atoms = 0.0196

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.67162 (5)0.27737 (3)0.24918 (11)0.0809 (3)
Br20.60606 (4)1.09811 (3)0.58183 (8)0.05453 (19)
O10.5518 (2)0.47872 (18)0.7707 (5)0.0472 (11)
H10.535 (3)0.522 (3)0.735 (8)0.060 (18)*
O20.6695 (2)0.9108 (2)0.0102 (5)0.0456 (10)
H20.652 (3)0.866 (3)0.011 (6)0.033 (15)*
N10.5215 (2)0.57136 (19)0.5340 (5)0.0323 (10)
N20.5797 (2)0.81491 (18)0.1168 (5)0.0276 (10)
C10.6119 (3)0.7142 (2)0.4338 (5)0.0241 (10)
C20.5428 (3)0.7020 (2)0.5162 (6)0.0264 (11)
C30.5218 (3)0.7474 (2)0.6439 (6)0.0322 (12)
H30.47470.73940.69970.039*
C40.5677 (3)0.8040 (3)0.6920 (6)0.0339 (13)
H40.55200.83520.77880.041*
C50.6370 (3)0.8150 (2)0.6127 (6)0.0295 (12)
H50.66950.85280.64850.035*
C60.6599 (3)0.7713 (2)0.4810 (6)0.0257 (11)
C70.6330 (2)0.6691 (2)0.2859 (6)0.0260 (12)
C80.5986 (3)0.6837 (2)0.1323 (6)0.0269 (11)
C90.6174 (3)0.6418 (2)0.0046 (6)0.0359 (13)
H90.59530.65180.10970.043*
C100.6694 (3)0.5846 (3)0.0138 (7)0.0408 (14)
H100.68140.55500.07840.049*
C110.7023 (3)0.5717 (2)0.1626 (7)0.0349 (13)
H110.73790.53340.17210.042*
C120.6856 (3)0.6125 (2)0.3008 (6)0.0308 (12)
C130.7331 (3)0.7877 (2)0.3905 (6)0.0343 (13)
H1310.76140.82500.45030.051*
H1320.72130.80460.27850.051*
H1330.76430.74400.38380.051*
C140.7212 (3)0.5954 (2)0.4662 (6)0.0378 (13)
H1410.76030.55810.45190.057*
H1420.68170.57800.54240.057*
H1430.74490.63880.51190.057*
C150.4918 (3)0.6394 (2)0.4702 (7)0.0350 (13)
H1510.44000.64770.51550.042*
H1520.48760.63660.34810.042*
C160.5435 (3)0.5242 (2)0.4311 (7)0.0297 (12)
H160.53860.53410.31620.036*
C170.5763 (3)0.4550 (2)0.4825 (7)0.0309 (13)
C180.5789 (3)0.4360 (2)0.6508 (7)0.0345 (13)
C190.6098 (3)0.3693 (2)0.6950 (7)0.0406 (14)
H190.61190.35600.80850.049*
C200.6371 (3)0.3231 (2)0.5771 (8)0.0443 (14)
H200.65780.27790.60850.053*
C210.6342 (3)0.3425 (2)0.4130 (8)0.0429 (15)
C220.6056 (3)0.4089 (2)0.3637 (6)0.0375 (12)
H220.60620.42240.25020.045*
C230.5416 (3)0.7448 (2)0.1138 (6)0.0277 (12)
H2310.51370.73930.00790.033*
H2320.50390.74240.20500.033*
C240.5653 (3)0.8582 (2)0.2340 (6)0.0283 (11)
H240.52920.84460.31610.034*
C250.6028 (3)0.9285 (2)0.2469 (6)0.0273 (10)
C260.6540 (3)0.9513 (2)0.1224 (6)0.0315 (12)
C270.6890 (3)1.0185 (2)0.1379 (7)0.0390 (14)
H270.72311.03470.05420.047*
C280.6746 (3)1.0614 (2)0.2738 (7)0.0368 (13)
H280.69951.10660.28450.044*
C290.6241 (3)1.0386 (2)0.3939 (7)0.0368 (13)
C300.5887 (3)0.9725 (2)0.3835 (6)0.0302 (12)
H300.55510.95690.46870.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0971 (6)0.0346 (3)0.1110 (6)0.0063 (3)0.0688 (5)0.0001 (4)
Br20.0636 (4)0.0392 (3)0.0609 (4)0.0047 (3)0.0095 (4)0.0220 (3)
O10.066 (3)0.0302 (18)0.046 (3)0.0010 (19)0.009 (2)0.001 (2)
O20.058 (3)0.038 (2)0.041 (2)0.009 (2)0.017 (2)0.0092 (19)
N10.038 (3)0.0209 (18)0.038 (3)0.0027 (18)0.000 (2)0.0026 (19)
N20.035 (2)0.0235 (18)0.024 (2)0.0033 (17)0.007 (2)0.0012 (18)
C10.030 (3)0.0195 (19)0.023 (2)0.004 (2)0.006 (2)0.004 (2)
C20.035 (3)0.021 (2)0.024 (3)0.006 (2)0.005 (2)0.003 (2)
C30.033 (3)0.030 (2)0.034 (3)0.007 (2)0.001 (3)0.005 (2)
C40.044 (3)0.033 (3)0.024 (3)0.010 (3)0.002 (3)0.002 (2)
C50.041 (3)0.023 (2)0.025 (3)0.001 (2)0.017 (3)0.003 (2)
C60.026 (3)0.022 (2)0.029 (3)0.000 (2)0.006 (2)0.001 (2)
C70.028 (3)0.019 (2)0.032 (3)0.002 (2)0.003 (2)0.000 (2)
C80.030 (3)0.024 (2)0.027 (3)0.003 (2)0.005 (2)0.003 (2)
C90.047 (4)0.031 (2)0.030 (3)0.002 (3)0.010 (3)0.006 (2)
C100.041 (3)0.036 (3)0.045 (3)0.005 (3)0.006 (3)0.022 (3)
C110.026 (3)0.031 (3)0.048 (4)0.000 (2)0.008 (3)0.013 (3)
C120.030 (3)0.020 (2)0.042 (3)0.001 (2)0.009 (3)0.001 (2)
C130.037 (3)0.024 (2)0.042 (3)0.005 (2)0.008 (3)0.001 (2)
C140.037 (3)0.028 (2)0.048 (4)0.003 (3)0.014 (3)0.003 (3)
C150.037 (3)0.029 (2)0.039 (3)0.003 (2)0.002 (3)0.002 (2)
C160.030 (3)0.026 (2)0.034 (3)0.009 (2)0.006 (3)0.001 (2)
C170.022 (3)0.024 (2)0.047 (4)0.008 (2)0.001 (3)0.002 (2)
C180.032 (3)0.024 (2)0.048 (4)0.004 (2)0.002 (3)0.000 (3)
C190.036 (3)0.030 (2)0.056 (4)0.007 (3)0.002 (3)0.008 (2)
C200.031 (3)0.027 (3)0.075 (4)0.003 (2)0.006 (3)0.010 (3)
C210.034 (3)0.023 (2)0.071 (4)0.005 (2)0.021 (3)0.005 (3)
C220.035 (3)0.028 (2)0.050 (3)0.007 (3)0.011 (3)0.001 (3)
C230.035 (3)0.033 (2)0.015 (3)0.002 (2)0.011 (2)0.003 (2)
C240.033 (3)0.025 (2)0.027 (3)0.005 (2)0.007 (2)0.004 (2)
C250.032 (3)0.0249 (19)0.025 (3)0.003 (2)0.001 (3)0.002 (2)
C260.033 (3)0.029 (2)0.032 (3)0.001 (2)0.001 (3)0.002 (2)
C270.038 (3)0.036 (3)0.043 (4)0.005 (2)0.008 (3)0.001 (3)
C280.037 (3)0.025 (2)0.049 (4)0.000 (2)0.004 (3)0.002 (3)
C290.037 (3)0.032 (2)0.042 (4)0.003 (2)0.004 (3)0.011 (3)
C300.031 (3)0.029 (2)0.031 (3)0.005 (2)0.001 (2)0.003 (2)
Geometric parameters (Å, º) top
Br1—C211.909 (5)C13—H1310.9800
Br2—C291.904 (5)C13—H1320.9800
O1—C181.339 (6)C13—H1330.9800
O1—H10.91 (5)C14—H1410.9800
O2—C261.336 (6)C14—H1420.9800
O2—H20.90 (5)C14—H1430.9800
N1—C161.267 (6)C15—H1510.9900
N1—C151.462 (5)C15—H1520.9900
N2—C241.267 (6)C16—C171.469 (6)
N2—C231.464 (5)C16—H160.9500
C1—C21.398 (6)C17—C221.385 (6)
C1—C61.407 (6)C17—C181.405 (7)
C1—C71.505 (6)C18—C191.397 (6)
C2—C31.382 (6)C19—C201.369 (7)
C2—C151.512 (6)C19—H190.9500
C3—C41.380 (7)C20—C211.374 (8)
C3—H30.9500C20—H200.9500
C4—C51.387 (7)C21—C221.389 (6)
C4—H40.9500C22—H220.9500
C5—C61.396 (6)C23—H2310.9900
C5—H50.9500C23—H2320.9900
C6—C131.505 (7)C24—C251.467 (6)
C7—C121.403 (6)C24—H240.9500
C7—C81.405 (6)C25—C301.394 (6)
C8—C91.391 (6)C25—C261.411 (7)
C8—C231.520 (6)C26—C271.397 (6)
C9—C101.407 (7)C27—C281.380 (7)
C9—H90.9500C27—H270.9500
C10—C111.353 (7)C28—C291.379 (7)
C10—H100.9500C28—H280.9500
C11—C121.381 (6)C29—C301.379 (6)
C11—H110.9500C30—H300.9500
C12—C141.508 (7)
C18—O1—H1114 (4)N1—C15—H151109.3
C26—O2—H2107 (3)C2—C15—H151109.3
C16—N1—C15118.4 (4)N1—C15—H152109.3
C24—N2—C23119.1 (4)C2—C15—H152109.3
C2—C1—C6120.7 (4)H151—C15—H152107.9
C2—C1—C7119.9 (4)N1—C16—C17122.6 (5)
C6—C1—C7119.3 (4)N1—C16—H16118.7
C3—C2—C1119.1 (4)C17—C16—H16118.7
C3—C2—C15119.7 (5)C22—C17—C18120.1 (4)
C1—C2—C15121.2 (4)C22—C17—C16119.5 (5)
C4—C3—C2121.3 (5)C18—C17—C16120.4 (5)
C4—C3—H3119.3O1—C18—C19118.6 (5)
C2—C3—H3119.3O1—C18—C17122.6 (4)
C3—C4—C5119.5 (5)C19—C18—C17118.9 (5)
C3—C4—H4120.3C20—C19—C18120.9 (5)
C5—C4—H4120.3C20—C19—H19119.5
C4—C5—C6121.1 (4)C18—C19—H19119.5
C4—C5—H5119.4C19—C20—C21119.5 (5)
C6—C5—H5119.4C19—C20—H20120.2
C5—C6—C1118.3 (4)C21—C20—H20120.2
C5—C6—C13119.8 (4)C20—C21—C22121.5 (5)
C1—C6—C13121.9 (4)C20—C21—Br1119.3 (4)
C12—C7—C8120.1 (4)C22—C21—Br1119.2 (5)
C12—C7—C1120.7 (4)C17—C22—C21119.0 (5)
C8—C7—C1119.2 (4)C17—C22—H22120.5
C9—C8—C7119.5 (4)C21—C22—H22120.5
C9—C8—C23119.7 (4)N2—C23—C8111.4 (4)
C7—C8—C23120.8 (4)N2—C23—H231109.3
C8—C9—C10119.4 (5)C8—C23—H231109.3
C8—C9—H9120.3N2—C23—H232109.3
C10—C9—H9120.3C8—C23—H232109.3
C11—C10—C9120.2 (5)H231—C23—H232108.0
C11—C10—H10119.9N2—C24—C25122.0 (5)
C9—C10—H10119.9N2—C24—H24119.0
C10—C11—C12122.0 (4)C25—C24—H24119.0
C10—C11—H11119.0C30—C25—C26120.0 (4)
C12—C11—H11119.0C30—C25—C24120.0 (4)
C11—C12—C7118.8 (5)C26—C25—C24120.0 (4)
C11—C12—C14120.8 (4)O2—C26—C27119.1 (5)
C7—C12—C14120.4 (4)O2—C26—C25122.1 (4)
C6—C13—H131109.5C27—C26—C25118.9 (5)
C6—C13—H132109.5C28—C27—C26120.6 (5)
H131—C13—H132109.5C28—C27—H27119.7
C6—C13—H133109.5C26—C27—H27119.7
H131—C13—H133109.5C29—C28—C27119.9 (4)
H132—C13—H133109.5C29—C28—H28120.1
C12—C14—H141109.5C27—C28—H28120.1
C12—C14—H142109.5C28—C29—C30121.3 (5)
H141—C14—H142109.5C28—C29—Br2119.2 (4)
C12—C14—H143109.5C30—C29—Br2119.5 (4)
H141—C14—H143109.5C29—C30—C25119.4 (5)
H142—C14—H143109.5C29—C30—H30120.3
N1—C15—C2111.7 (4)C25—C30—H30120.3
C6—C1—C2—C30.8 (6)C15—N1—C16—C17178.1 (4)
C7—C1—C2—C3175.2 (4)N1—C16—C17—C22174.1 (5)
C6—C1—C2—C15178.1 (4)N1—C16—C17—C185.1 (7)
C7—C1—C2—C155.9 (6)C22—C17—C18—O1179.6 (4)
C1—C2—C3—C40.4 (7)C16—C17—C18—O10.3 (8)
C15—C2—C3—C4178.4 (4)C22—C17—C18—C191.4 (7)
C2—C3—C4—C51.1 (7)C16—C17—C18—C19179.4 (4)
C3—C4—C5—C62.4 (7)O1—C18—C19—C20178.9 (5)
C4—C5—C6—C12.0 (7)C17—C18—C19—C200.2 (7)
C4—C5—C6—C13176.1 (4)C18—C19—C20—C210.2 (8)
C2—C1—C6—C50.4 (6)C19—C20—C21—C221.3 (8)
C7—C1—C6—C5176.5 (4)C19—C20—C21—Br1179.5 (4)
C2—C1—C6—C13177.6 (4)C18—C17—C22—C212.8 (7)
C7—C1—C6—C131.6 (6)C16—C17—C22—C21177.9 (4)
C2—C1—C7—C12101.6 (5)C20—C21—C22—C172.8 (8)
C6—C1—C7—C1282.4 (5)Br1—C21—C22—C17178.0 (4)
C2—C1—C7—C877.7 (5)C24—N2—C23—C8115.8 (5)
C6—C1—C7—C898.3 (5)C9—C8—C23—N2106.0 (5)
C12—C7—C8—C90.2 (7)C7—C8—C23—N273.7 (5)
C1—C7—C8—C9179.5 (4)C23—N2—C24—C25178.5 (4)
C12—C7—C8—C23179.9 (4)N2—C24—C25—C30176.0 (4)
C1—C7—C8—C230.8 (6)N2—C24—C25—C263.0 (7)
C7—C8—C9—C101.3 (7)C30—C25—C26—O2179.7 (4)
C23—C8—C9—C10179.1 (4)C24—C25—C26—O20.6 (7)
C8—C9—C10—C111.7 (8)C30—C25—C26—C270.8 (7)
C9—C10—C11—C121.2 (8)C24—C25—C26—C27179.9 (4)
C10—C11—C12—C70.1 (7)O2—C26—C27—C28179.6 (5)
C10—C11—C12—C14178.0 (5)C25—C26—C27—C280.8 (8)
C8—C7—C12—C110.3 (7)C26—C27—C28—C291.3 (8)
C1—C7—C12—C11178.9 (4)C27—C28—C29—C301.7 (8)
C8—C7—C12—C14178.5 (4)C27—C28—C29—Br2179.1 (4)
C1—C7—C12—C140.8 (6)C28—C29—C30—C251.7 (7)
C16—N1—C15—C2114.4 (5)Br2—C29—C30—C25179.1 (4)
C3—C2—C15—N1102.7 (5)C26—C25—C30—C291.2 (7)
C1—C2—C15—N176.2 (6)C24—C25—C30—C29179.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.91 (5)1.88 (6)2.627 (6)138 (5)
O2—H2···N20.90 (5)1.80 (5)2.588 (5)145 (4)

Experimental details

Crystal data
Chemical formulaC30H26Br2N2O2
Mr606.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)17.496 (5), 18.590 (2), 8.074 (7)
V3)2626 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.12
Crystal size (mm)0.38 × 0.28 × 0.23
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.384, 0.632
No. of measured, independent and
observed [I > 2σ(I)] reflections
8236, 6049, 3460
Rint0.047
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.106, 0.98
No. of reflections6049
No. of parameters336
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.59
Absolute structureFlack & Bernardinelli (2000); 2630 Friedel pairs
Absolute structure parameter0.013 (9)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1999), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.91 (5)1.88 (6)2.627 (6)138 (5)
O2—H2···N20.90 (5)1.80 (5)2.588 (5)145 (4)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds