Download citation
Download citation
link to html
The title compound, C20H12N2, displays slightly lengthened C—C bonds at the central C atom of the triquinacene framework (mean 1.572 Å) and wide exocyclic angles at the benzo-annelation sites (ca 127°). The packing is determined by two C—H...N contacts and one of the type C—H...π.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803005221/bt6247sup1.cif
Contains datablocks 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803005221/bt62472sup2.hkl
Contains datablock 2

CCDC reference: 209972

Key indicators

  • Single-crystal X-ray study
  • T = 178 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.065
  • wR factor = 0.216
  • Data-to-parameter ratio = 12.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(9) - C(19) = 1.44 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Dibenzoisobullvalene dicarbonitrile [(1); Jones et al., 2003], readily available by photoisomerization of the corresponding dibenzoprebullvalene isomer (Hopf & Witulski, 1995), contains a vinylcyclopropane subunit that, in principle, can undergo thermal ring expansion to a five-membered ring. To test this possibility, we heated (1) in toluene in a sealed ampoule at 503 K. From the product mixture, the ring-expanded dinitrile (2), a derivative of dibenzotriquinacene, can indeed be isolated in good yield (86%). The structure of (2) was previously elucidated by its spectroscopic and analytical data (Witulski, 1992) and the X-ray structural analysis reported here.

The molecule of (2) is shown in Fig. 1. Bond lengths and angles may be regarded as normal; however, some deviations from standard values are observed, e.g. the slightly lengthened bonds to the central atom C10 of the triquinacene framework, and the widened exocyclic angles at the benzo-annelation sites (Table 1).

The molecules are linked to form corrugated layers parallel to (101) by two C—H···N contacts (Table 2). Additionally, the centroid (Cent) of ring C6/C7/C15–C18 is involved in a contact of the type C—H···π, viz. C17—H17···Cent(1 − x, 1 − y, −z), with H···Cent = 2.72 Å and an angle of 150°. This contact, not shown in Fig. 2, links the layers to complete the three-dimensional packing.

Experimental top

The title compound was prepared according to Witulski (1992) and recrystallized from chloroform/pentane.

Refinement top

H atoms were included using a riding model with fixed C—H bond lengths (Csp2—H = 0.95 Å and methine = 1.00 Å); Uiso(H) values were fixed at 1.2Ueq of the parent atom.

Computing details top

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of compound (2) in the crystal. Ellipsoids are shown at the 30% probability level and H-atom radii are arbitrary.
[Figure 2] Fig. 2. Packing diagram of compound (2), viewed perpendicular to the (101) planes. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonds have been omitted.
(3,4),(6,7)Dibenzo-9,10-dicyanotriquinacene top
Crystal data top
C20H12N2F(000) = 584
Mr = 280.32Dx = 1.297 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 49 reflections
a = 9.528 (4) Åθ = 10–11.5°
b = 12.401 (6) ŵ = 0.08 mm1
c = 12.265 (6) ÅT = 178 K
β = 97.73 (4)°Prism, colourless
V = 1436.0 (12) Å30.50 × 0.35 × 0.25 mm
Z = 4
Data collection top
Nicolet R3
diffractometer
Rint = 0.053
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 3.0°
Graphite monochromatorh = 411
ω scansk = 1314
4770 measured reflectionsl = 1414
2542 independent reflections3 standard reflections every 147 reflections
1266 reflections with I > 2s(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1P)2 + 0.4194P]
where P = (Fo2 + 2Fc2)/3
2542 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H12N2V = 1436.0 (12) Å3
Mr = 280.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.528 (4) ŵ = 0.08 mm1
b = 12.401 (6) ÅT = 178 K
c = 12.265 (6) Å0.50 × 0.35 × 0.25 mm
β = 97.73 (4)°
Data collection top
Nicolet R3
diffractometer
Rint = 0.053
4770 measured reflections3 standard reflections every 147 reflections
2542 independent reflections intensity decay: none
1266 reflections with I > 2s(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
2542 reflectionsΔρmin = 0.28 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3621 (4)0.7145 (4)0.2406 (3)0.0454 (10)
H10.28960.76410.21380.054*
C20.5117 (4)0.7477 (3)0.2839 (3)0.0384 (9)
H20.51390.79960.34650.046*
C30.5945 (4)0.7896 (3)0.1958 (3)0.0351 (9)
C40.7047 (4)0.7215 (3)0.1803 (3)0.0368 (9)
C50.7084 (4)0.6205 (3)0.2493 (3)0.0367 (9)
H50.80210.61120.29590.044*
C60.6646 (4)0.5205 (3)0.1848 (3)0.0388 (9)
C70.5360 (4)0.4797 (3)0.2061 (3)0.0411 (9)
C80.4732 (4)0.5471 (3)0.2893 (3)0.0402 (10)
H80.45660.50340.35490.048*
C90.3427 (4)0.6099 (4)0.2439 (3)0.0461 (10)
C100.5855 (4)0.6388 (3)0.3215 (3)0.0359 (9)
C110.5684 (4)0.8825 (3)0.1346 (3)0.0439 (10)
H110.49180.92840.14570.053*
C120.6547 (4)0.9074 (3)0.0575 (3)0.0494 (11)
H120.63640.97030.01370.059*
C130.7683 (5)0.8421 (4)0.0428 (3)0.0559 (12)
H130.82920.86180.00920.067*
C140.7940 (4)0.7483 (4)0.1032 (3)0.0488 (11)
H140.87130.70290.09240.059*
C150.7368 (4)0.4700 (3)0.1076 (3)0.0480 (11)
H150.82490.49770.09180.058*
C160.6785 (5)0.3793 (4)0.0544 (3)0.0586 (13)
H160.72770.34400.00220.070*
C170.5506 (6)0.3389 (4)0.0756 (4)0.0637 (13)
H170.51210.27670.03750.076*
C180.4775 (5)0.3883 (3)0.1523 (3)0.0574 (12)
H180.38950.36030.16780.069*
C190.2120 (5)0.5575 (4)0.2025 (4)0.0630 (13)
C200.6344 (4)0.6374 (3)0.4405 (3)0.0373 (9)
N10.1104 (4)0.5127 (4)0.1702 (4)0.0934 (16)
N20.6685 (4)0.6349 (3)0.5333 (3)0.0482 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (2)0.058 (3)0.038 (2)0.005 (2)0.0122 (17)0.0049 (19)
C20.042 (2)0.039 (2)0.0338 (19)0.0021 (17)0.0040 (16)0.0001 (17)
C30.044 (2)0.031 (2)0.0281 (18)0.0055 (17)0.0006 (15)0.0004 (16)
C40.039 (2)0.040 (2)0.0306 (18)0.0088 (18)0.0014 (16)0.0013 (16)
C50.038 (2)0.037 (2)0.0335 (19)0.0003 (17)0.0006 (16)0.0001 (16)
C60.046 (2)0.036 (2)0.0326 (19)0.0077 (18)0.0015 (17)0.0011 (16)
C70.051 (2)0.032 (2)0.039 (2)0.0027 (18)0.0011 (18)0.0036 (17)
C80.041 (2)0.044 (2)0.0354 (19)0.0061 (18)0.0025 (17)0.0066 (17)
C90.041 (2)0.060 (3)0.038 (2)0.008 (2)0.0065 (17)0.0067 (19)
C100.041 (2)0.036 (2)0.0310 (18)0.0015 (17)0.0046 (16)0.0004 (16)
C110.053 (2)0.042 (2)0.035 (2)0.0028 (19)0.0006 (18)0.0017 (18)
C120.058 (3)0.045 (2)0.041 (2)0.013 (2)0.008 (2)0.0129 (19)
C130.052 (3)0.069 (3)0.047 (2)0.020 (2)0.007 (2)0.013 (2)
C140.040 (2)0.066 (3)0.040 (2)0.000 (2)0.0052 (18)0.005 (2)
C150.051 (2)0.051 (3)0.039 (2)0.012 (2)0.0026 (19)0.0006 (19)
C160.080 (3)0.053 (3)0.039 (2)0.027 (3)0.009 (2)0.005 (2)
C170.090 (4)0.044 (3)0.051 (3)0.002 (3)0.013 (3)0.011 (2)
C180.067 (3)0.049 (3)0.051 (3)0.011 (2)0.010 (2)0.002 (2)
C190.048 (3)0.077 (3)0.062 (3)0.015 (3)0.001 (2)0.022 (3)
C200.046 (2)0.031 (2)0.035 (2)0.0062 (17)0.0065 (17)0.0033 (16)
N10.058 (3)0.118 (4)0.099 (3)0.031 (3)0.008 (3)0.030 (3)
N20.057 (2)0.051 (2)0.0365 (18)0.0072 (17)0.0061 (15)0.0031 (16)
Geometric parameters (Å, º) top
C1—C91.312 (6)C8—H81.0000
C1—C21.510 (5)C9—C191.436 (6)
C1—H10.9500C10—C201.471 (5)
C2—C31.513 (5)C11—C121.369 (5)
C2—C101.564 (5)C11—H110.9500
C2—H21.0000C12—C131.383 (6)
C3—C111.379 (5)C12—H120.9500
C3—C41.381 (5)C13—C141.383 (6)
C4—C141.395 (5)C13—H130.9500
C4—C51.509 (5)C14—H140.9500
C5—C61.501 (5)C15—C161.380 (6)
C5—C101.577 (5)C15—H150.9500
C5—H51.0000C16—C171.374 (7)
C6—C71.383 (5)C16—H160.9500
C6—C151.391 (5)C17—C181.386 (6)
C7—C181.390 (5)C17—H170.9500
C7—C81.504 (5)C18—H180.9500
C8—C91.508 (5)C19—N11.140 (5)
C8—C101.574 (5)C20—N21.141 (4)
C9—C1—C2112.9 (4)C1—C9—C8114.2 (3)
C9—C1—H1123.6C19—C9—C8122.0 (4)
C2—C1—H1123.6C20—C10—C2111.9 (3)
C1—C2—C3113.6 (3)C20—C10—C8110.8 (3)
C1—C2—C10103.5 (3)C2—C10—C8106.6 (3)
C3—C2—C10104.5 (3)C20—C10—C5113.3 (3)
C1—C2—H2111.6C2—C10—C5107.3 (3)
C3—C2—H2111.6C8—C10—C5106.6 (3)
C10—C2—H2111.6C12—C11—C3118.9 (4)
C11—C3—C4121.4 (3)C12—C11—H11120.6
C11—C3—C2127.0 (3)C3—C11—H11120.6
C4—C3—C2111.6 (3)C11—C12—C13120.7 (4)
C3—C4—C14119.5 (3)C11—C12—H12119.6
C3—C4—C5113.0 (3)C13—C12—H12119.6
C14—C4—C5127.4 (4)C14—C13—C12120.6 (4)
C6—C5—C4114.0 (3)C14—C13—H13119.7
C6—C5—C10103.9 (3)C12—C13—H13119.7
C4—C5—C10103.5 (3)C13—C14—C4118.9 (4)
C6—C5—H5111.6C13—C14—H14120.6
C4—C5—H5111.6C4—C14—H14120.6
C10—C5—H5111.6C16—C15—C6118.9 (4)
C7—C6—C15119.8 (4)C16—C15—H15120.5
C7—C6—C5113.1 (3)C6—C15—H15120.5
C15—C6—C5127.1 (4)C17—C16—C15121.2 (4)
C6—C7—C18121.1 (4)C17—C16—H16119.4
C6—C7—C8111.7 (3)C15—C16—H16119.4
C18—C7—C8127.2 (4)C16—C17—C18120.4 (4)
C7—C8—C9114.8 (3)C16—C17—H17119.8
C7—C8—C10104.6 (3)C18—C17—H17119.8
C9—C8—C10102.6 (3)C17—C18—C7118.5 (4)
C7—C8—H8111.4C17—C18—H18120.8
C9—C8—H8111.4C7—C18—H18120.8
C10—C8—H8111.4N1—C19—C9177.8 (6)
C1—C9—C19123.8 (4)N2—C20—C10177.9 (4)
C9—C1—C2—C3110.4 (4)C1—C2—C10—C20117.5 (3)
C9—C1—C2—C102.3 (4)C3—C2—C10—C20123.3 (3)
C1—C2—C3—C1166.0 (5)C1—C2—C10—C83.7 (3)
C10—C2—C3—C11178.1 (3)C3—C2—C10—C8115.5 (3)
C1—C2—C3—C4113.3 (4)C1—C2—C10—C5117.7 (3)
C10—C2—C3—C41.1 (4)C3—C2—C10—C51.5 (3)
C11—C3—C4—C141.7 (5)C7—C8—C10—C20121.6 (3)
C2—C3—C4—C14179.0 (3)C9—C8—C10—C20118.1 (3)
C11—C3—C4—C5175.7 (3)C7—C8—C10—C2116.4 (3)
C2—C3—C4—C53.6 (4)C9—C8—C10—C23.8 (3)
C3—C4—C5—C6107.8 (4)C7—C8—C10—C52.0 (3)
C14—C4—C5—C669.4 (5)C9—C8—C10—C5118.2 (3)
C3—C4—C5—C104.3 (4)C6—C5—C10—C20120.1 (3)
C14—C4—C5—C10178.5 (3)C4—C5—C10—C20120.6 (3)
C4—C5—C6—C7110.6 (4)C6—C5—C10—C2115.9 (3)
C10—C5—C6—C71.3 (4)C4—C5—C10—C23.4 (3)
C4—C5—C6—C1567.6 (5)C6—C5—C10—C82.0 (3)
C10—C5—C6—C15179.5 (3)C4—C5—C10—C8117.3 (3)
C15—C6—C7—C180.5 (6)C4—C3—C11—C120.4 (5)
C5—C6—C7—C18178.9 (3)C2—C3—C11—C12179.6 (4)
C15—C6—C7—C8178.4 (3)C3—C11—C12—C131.5 (6)
C5—C6—C7—C80.0 (4)C11—C12—C13—C142.2 (6)
C6—C7—C8—C9110.4 (4)C12—C13—C14—C40.9 (6)
C18—C7—C8—C968.4 (5)C3—C4—C14—C131.0 (5)
C6—C7—C8—C101.3 (4)C5—C4—C14—C13176.0 (4)
C18—C7—C8—C10179.9 (4)C7—C6—C15—C160.6 (5)
C2—C1—C9—C19176.8 (3)C5—C6—C15—C16178.7 (3)
C2—C1—C9—C80.3 (5)C6—C15—C16—C170.6 (6)
C7—C8—C9—C1110.2 (4)C15—C16—C17—C180.6 (6)
C10—C8—C9—C12.7 (4)C16—C17—C18—C70.6 (6)
C7—C8—C9—C1966.4 (5)C6—C7—C18—C170.5 (6)
C10—C8—C9—C19179.3 (3)C8—C7—C18—C17178.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N2i0.952.673.478 (5)144
C8—H8···N2ii1.002.593.528 (5)157
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H12N2
Mr280.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)178
a, b, c (Å)9.528 (4), 12.401 (6), 12.265 (6)
β (°) 97.73 (4)
V3)1436.0 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.35 × 0.25
Data collection
DiffractometerNicolet R3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2s(I)] reflections
4770, 2542, 1266
Rint0.053
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.217, 1.04
No. of reflections2542
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: P3 (Nicolet, 1987), P3, XDISK (Nicolet, 1987), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
C2—C101.564 (5)C8—C101.574 (5)
C5—C101.577 (5)
C11—C3—C2127.0 (3)C15—C6—C5127.1 (4)
C14—C4—C5127.4 (4)C18—C7—C8127.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N2i0.952.673.478 (5)144
C8—H8···N2ii1.002.593.528 (5)157
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds