Download citation
Download citation
link to html
In the title compound, rac-Bis­[μ-(1R,2S,12R,13s,15s,17S,18r)-14,16,19-trioxa-3,7,11-tri­aza­tetra­cyclo[13.3.1.02,13.012,17]­nonadecan-18-olato-1κ3N3,N7,N11:2κ2O18]­dizinc(II) bis­[tri­chloro­(pyridine)­zincate(II)], [Zn2(C13H22N3O4)2][ZnCl3(C5H4N)]2, the cation displays crystallographic inversion symmetry. The geometry at zinc is trigonal bipyramidal. Three hydrogen bonds N—H...Cl—Zn lead to the formation of columns parallel to the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803005890/bt6252sup1.cif
Contains datablocks 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803005890/bt62522sup2.hkl
Contains datablock 2

CCDC reference: 209889

Key indicators

  • Single-crystal X-ray study
  • T = 143 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.029
  • wR factor = 0.068
  • Data-to-parameter ratio = 13.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
ABSTM_02 Alert B The ratio of expected to reported Tmax/Tmin(RR) is > 1.50 Tmin and Tmax reported: 0.670 0.984 Tmin and Tmax expected: 0.302 0.688 RR = 1.553 Please check that your absorption correction is appropriate. General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.700 Tmax scaled 0.688 Tmin scaled 0.469
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

The previous communication (Jones et al., 2003) described the crystal and molecular structure of a cationic zinc complex, of interest as a potential leaving group in models for certain aspects of catalysis in metalloenzymes. Crystal structures also contain a wealth of potential information about reactivity, but evidence from a single structure (which may be `basically anecdotal'; Kirby, 1994) should be regarded with caution. We report here a second structure, (2), containing the same dication (but with a different counter-ion). The structure was determined because it was thought that a different, possibly monomeric form of the zinc complex might have been formed (see Experimental). However, the structure solution (Fig. 1) revealed the same dimeric dication, again with inversion symmetry, but with the complex anion [Zn(py)Cl3]- replacing chloride as counter-ion. The formation of the dimeric complex in two different structures with distinctly different counter-ions, and in the presence of a potentially competing ligand (pyridine), suggests that the species is relatively stable and not just the `accidental' result of a compromise between packing forces in a specific structure.

The cations of both compounds are structurally similar, as would be expected; the general comments of the previous paper are thus valid for the current structure (e.g. the inversion symmetry and the trigonal-bipyramidal geometry at zinc; however, some differences are presented below). We also have good spectroscopic evidence that the structures are similar in solution (Beckmann, 1998). A least-squares fit of the asymmetric unit of both cations (Fig. 2) shows that the ZnNC3N rings differ in conformation between the two compounds; except for these three C atoms; however, the r.m.s. displacement is only 0.09 Å. Bond lengths and angles at zinc (see Table 1 for exact values and s.u.'s) differ appreciably for Zn—O4ax (here 2.09, previously 2.16 Å) and O4eq—Zn—N3 (here 124°, previously 107°).

The anion has distorted tetrahedral geometry at the central Zn atom. Three classical N—H···Cl—Zn hydrogen bonds (Table 2) are observed between anion and cation, the net effect of which is to form columns of anions and cations parallel to the x axis in the regions x,y 1/2 (Fig. 3) and x,y 0. However, these interactions are appreciably longer than the N—H···Cl- of the previous structure, and are supplemented by a series of `weak' C—H···X hydrogen bonds (X = Cl and O; Table 2) of comparable lengths.

Experimental top

Crystals of (2) were obtained fortuitously on adding pyridine to the combined `waste' solutions from completed kinetic experiments (which had been retained for recycling) (Beckmann, 1998). Crystals began to grow from an aqueous solution (also containing N-ethylmorpholine buffer and KCl) some days after

adding pyridine.

Refinement top

H atoms of NH groups were identified in difference syntheses and refined freely, but with a common N—H distance restraint. Other H atoms were included using a riding model with fixed C—H bond lengths of 1.00 (CH) or 0.99 Å (CH2); Uiso(H) values were fixed at 1.2Ueq of the parent atom. One curious feature of the structure is the very short bond C5—C6, which at 1.442 (5) Å is much shorter than the corresponding bond in the previous paper, 1.524 (3) Å. We attribute this to libration effects arising from the appreciably higher U values of C5 and C6, or to a slight disorder of these atoms.

Computing details top

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of the title compound in the crystal. Ellipsoids represent 30% probability levels. H-atom radii are arbitrary.
[Figure 2] Fig. 2. Least-squares fit of the chemically identical cations (asymmetric unit only, H atoms have been omitted) of the title compound (dashed bonds) and that of the previous paper (full bonds; Jones et al., 2003).
[Figure 3] Fig. 3. Packing diagram of the title compound, showing one column (see text). Hydrogen bonds are indicated by dashed lines. H atoms not involved in classical hydrogen bonds have been omitted.
rac-Bis[µ-(1R,2S,12R,13S,15S,17S,18R)-14,16,19-trioxa-3,7,11- triazatetracyclo[13.3.1.02,13.012,17]nonadecan-18-olato- 1κ3N3,N7,N11:2κ2O18]dizinc(II) bis[trichloro(pyridine)zincate(II)] top
Crystal data top
[Zn2(C13H22N3O4)2][ZnCl3(C5H4N)]2F(000) = 1224
Mr = 1201.05Dx = 1.750 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 54 reflections
a = 9.5416 (15) Åθ = 10–11.5°
b = 17.491 (2) ŵ = 2.49 mm1
c = 14.098 (3) ÅT = 143 K
β = 104.366 (10)°Tablet, colourless
V = 2279.2 (7) Å30.5 × 0.45 × 0.15 mm
Z = 2
Data collection top
Stoe STADI-4
diffractometer
3390 reflections with I > 2s(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.0°, θmin = 3.2°
ω/θ–scansh = 1111
Absorption correction: ψ scans
(XEMP; Siemens, 1994)
k = 2020
Tmin = 0.670, Tmax = 0.984l = 016
8250 measured reflections3 standard reflections every 60 min
4031 independent reflections intensity decay: 4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0268P)2 + 1.2592P]
where P = (Fo2 + 2Fc2)/3
4031 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.47 e Å3
3 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Zn2(C13H22N3O4)2][ZnCl3(C5H4N)]2V = 2279.2 (7) Å3
Mr = 1201.05Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.5416 (15) ŵ = 2.49 mm1
b = 17.491 (2) ÅT = 143 K
c = 14.098 (3) Å0.5 × 0.45 × 0.15 mm
β = 104.366 (10)°
Data collection top
Stoe STADI-4
diffractometer
3390 reflections with I > 2s(I)
Absorption correction: ψ scans
(XEMP; Siemens, 1994)
Rint = 0.035
Tmin = 0.670, Tmax = 0.9843 standard reflections every 60 min
8250 measured reflections intensity decay: 4%
4031 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0293 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.47 e Å3
4031 reflectionsΔρmin = 0.38 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.91734 (4)0.571013 (18)0.44236 (2)0.02080 (10)
N11.0368 (3)0.62766 (14)0.35878 (18)0.0228 (5)
H011.117 (3)0.6281 (17)0.396 (2)0.024 (9)*
N20.8144 (3)0.67003 (15)0.4767 (2)0.0299 (6)
H020.798 (3)0.6616 (18)0.5288 (18)0.025 (9)*
N30.7508 (3)0.53112 (15)0.32799 (18)0.0236 (5)
H030.733 (3)0.4924 (14)0.355 (2)0.021 (9)*
O10.9238 (2)0.41052 (12)0.17158 (15)0.0318 (5)
O21.1323 (2)0.48262 (13)0.19182 (16)0.0340 (5)
O30.9116 (2)0.53528 (12)0.11301 (15)0.0326 (5)
O41.0343 (2)0.47328 (11)0.42589 (14)0.0241 (4)
C10.8035 (3)0.50532 (16)0.2431 (2)0.0235 (6)
H10.71700.49140.18970.028*
C20.8874 (3)0.56684 (17)0.2026 (2)0.0226 (6)
H20.82780.61440.18770.027*
C31.0378 (3)0.58641 (17)0.2671 (2)0.0245 (7)
H31.08710.62000.22780.029*
C40.9922 (4)0.70875 (18)0.3387 (2)0.0362 (8)
H4A0.89200.71020.29710.043*
H4B1.05590.73300.30170.043*
C50.9989 (5)0.7544 (2)0.4308 (3)0.0610 (12)
H5A1.10200.75670.46680.073*
H5B0.96990.80730.40960.073*
C60.9187 (5)0.7337 (2)0.5012 (3)0.0583 (11)
H6A0.86530.77950.51390.070*
H6B0.98940.72070.56330.070*
C70.6733 (4)0.69055 (19)0.4128 (2)0.0357 (8)
H7A0.68820.71780.35450.043*
H7B0.62280.72580.44820.043*
C80.5795 (4)0.6211 (2)0.3800 (3)0.0404 (9)
H8A0.47730.63780.35900.049*
H8B0.58840.58650.43670.049*
C90.6165 (3)0.57671 (19)0.2968 (2)0.0339 (8)
H9A0.53520.54200.26770.041*
H9B0.62740.61310.24530.041*
C100.9947 (4)0.4676 (2)0.1319 (2)0.0350 (8)
H101.00760.44830.06790.042*
C110.9011 (3)0.43465 (17)0.2645 (2)0.0261 (7)
H110.85060.39320.29190.031*
C121.0487 (3)0.45019 (17)0.3346 (2)0.0240 (6)
H121.10770.40230.34230.029*
C131.1229 (3)0.51127 (18)0.2867 (2)0.0269 (7)
H131.22220.52130.32850.032*
Zn20.55898 (4)0.29695 (2)0.33708 (2)0.02471 (10)
Cl10.70807 (10)0.19961 (5)0.33195 (6)0.0420 (2)
Cl20.33240 (8)0.26753 (5)0.34444 (6)0.03215 (19)
Cl30.65690 (9)0.38564 (5)0.45101 (6)0.0352 (2)
N40.5270 (3)0.34672 (14)0.20015 (17)0.0255 (6)
C200.4145 (3)0.39309 (19)0.1681 (2)0.0336 (8)
H200.35560.40600.21100.040*
C210.3809 (4)0.4229 (2)0.0750 (3)0.0437 (9)
H210.30090.45660.05440.052*
C220.4643 (4)0.4036 (2)0.0123 (3)0.0455 (10)
H220.44100.42240.05300.055*
C230.5817 (4)0.3568 (2)0.0449 (2)0.0396 (9)
H230.64310.34390.00360.048*
C240.6084 (3)0.32891 (18)0.1391 (2)0.0292 (7)
H240.68840.29550.16140.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02457 (18)0.02292 (18)0.01495 (17)0.00391 (14)0.00496 (13)0.00259 (14)
N10.0199 (13)0.0264 (13)0.0203 (13)0.0012 (11)0.0018 (11)0.0009 (11)
N20.0402 (16)0.0307 (15)0.0198 (14)0.0073 (12)0.0094 (12)0.0010 (12)
N30.0254 (13)0.0222 (14)0.0236 (14)0.0009 (11)0.0072 (11)0.0029 (11)
O10.0483 (14)0.0280 (12)0.0192 (11)0.0035 (10)0.0086 (10)0.0046 (9)
O20.0387 (13)0.0427 (14)0.0268 (12)0.0102 (11)0.0201 (11)0.0020 (10)
O30.0472 (14)0.0363 (13)0.0145 (11)0.0083 (11)0.0082 (10)0.0024 (9)
O40.0328 (11)0.0254 (11)0.0137 (10)0.0086 (9)0.0052 (9)0.0012 (8)
C10.0240 (15)0.0257 (16)0.0188 (15)0.0001 (12)0.0014 (12)0.0014 (12)
C20.0270 (15)0.0268 (16)0.0148 (14)0.0056 (12)0.0067 (12)0.0019 (12)
C30.0253 (16)0.0289 (16)0.0217 (16)0.0009 (12)0.0102 (13)0.0047 (13)
C40.056 (2)0.0265 (17)0.0311 (19)0.0026 (16)0.0210 (17)0.0090 (14)
C50.098 (3)0.035 (2)0.061 (3)0.021 (2)0.038 (3)0.016 (2)
C60.069 (3)0.063 (3)0.050 (3)0.019 (2)0.026 (2)0.024 (2)
C70.048 (2)0.0378 (19)0.0242 (17)0.0248 (16)0.0137 (15)0.0047 (15)
C80.0270 (17)0.064 (2)0.0321 (19)0.0152 (17)0.0110 (15)0.0016 (17)
C90.0201 (15)0.045 (2)0.0333 (19)0.0054 (14)0.0003 (14)0.0026 (15)
C100.046 (2)0.043 (2)0.0178 (16)0.0126 (16)0.0106 (15)0.0002 (15)
C110.0346 (17)0.0249 (16)0.0198 (15)0.0012 (13)0.0089 (13)0.0011 (13)
C120.0280 (16)0.0255 (16)0.0190 (15)0.0103 (13)0.0069 (13)0.0013 (12)
C130.0242 (16)0.0380 (18)0.0192 (16)0.0071 (13)0.0063 (13)0.0010 (13)
Zn20.02293 (19)0.0324 (2)0.01939 (19)0.00034 (15)0.00636 (14)0.00079 (15)
Cl10.0425 (5)0.0506 (5)0.0359 (5)0.0195 (4)0.0154 (4)0.0044 (4)
Cl20.0265 (4)0.0461 (5)0.0262 (4)0.0075 (3)0.0109 (3)0.0082 (3)
Cl30.0405 (5)0.0406 (5)0.0234 (4)0.0131 (4)0.0057 (3)0.0024 (3)
N40.0228 (13)0.0323 (14)0.0205 (13)0.0033 (11)0.0037 (11)0.0010 (11)
C200.0283 (17)0.0392 (19)0.0321 (19)0.0021 (14)0.0054 (14)0.0017 (15)
C210.037 (2)0.048 (2)0.041 (2)0.0027 (17)0.0013 (17)0.0141 (18)
C220.057 (2)0.053 (2)0.0203 (18)0.0144 (19)0.0016 (17)0.0081 (16)
C230.050 (2)0.049 (2)0.0248 (18)0.0166 (18)0.0179 (16)0.0060 (16)
C240.0292 (17)0.0340 (17)0.0265 (17)0.0041 (14)0.0109 (14)0.0046 (14)
Geometric parameters (Å, º) top
Zn1—O4i1.9590 (19)C5—H5A0.9900
Zn1—N12.082 (2)C5—H5B0.9900
Zn1—N32.083 (3)C6—H6A0.9900
Zn1—O42.0860 (19)C6—H6B0.9900
Zn1—N22.106 (3)C7—C81.511 (5)
N1—C31.483 (4)C7—H7A0.9900
N1—C41.488 (4)C7—H7B0.9900
N1—H010.81 (2)C8—C91.520 (4)
N2—C71.467 (4)C8—H8A0.9900
N2—C61.477 (5)C8—H8B0.9900
N2—H020.80 (2)C9—H9A0.9900
N3—C11.479 (4)C9—H9B0.9900
N3—C91.480 (4)C10—H101.0000
N3—H030.82 (2)C11—C121.531 (4)
O1—C101.398 (4)C11—H111.0000
O1—C111.443 (3)C12—C131.528 (4)
O2—C101.399 (4)C12—H121.0000
O2—C131.452 (4)C13—H131.0000
O3—C101.414 (4)Zn2—N42.070 (2)
O3—C21.449 (3)Zn2—Cl12.2314 (9)
O4—C121.388 (3)Zn2—Cl22.2496 (9)
O4—Zn1i1.9590 (19)Zn2—Cl32.2615 (9)
C1—C111.532 (4)N4—C201.332 (4)
C1—C21.533 (4)N4—C241.332 (4)
C1—H11.0000C20—C211.375 (5)
C2—C31.534 (4)C20—H200.9500
C2—H21.0000C21—C221.371 (5)
C3—C131.533 (4)C21—H210.9500
C3—H31.0000C22—C231.372 (5)
C4—C51.512 (5)C22—H220.9500
C4—H4A0.9900C23—C241.377 (4)
C4—H4B0.9900C23—H230.9500
C5—C61.442 (5)C24—H240.9500
O4i—Zn1—N1133.76 (9)N2—C6—H6B107.8
O4i—Zn1—N3123.80 (10)H6A—C6—H6B107.1
N1—Zn1—N398.10 (10)N2—C7—C8112.0 (3)
O4i—Zn1—O476.99 (8)N2—C7—H7A109.2
N1—Zn1—O486.78 (9)C8—C7—H7A109.2
N3—Zn1—O488.04 (9)N2—C7—H7B109.2
O4i—Zn1—N296.93 (9)C8—C7—H7B109.2
N1—Zn1—N295.22 (10)H7A—C7—H7B107.9
N3—Zn1—N298.26 (10)C7—C8—C9114.4 (3)
O4—Zn1—N2173.04 (9)C7—C8—H8A108.7
C3—N1—C4111.2 (2)C9—C8—H8A108.7
C3—N1—Zn1112.64 (18)C7—C8—H8B108.7
C4—N1—Zn1112.96 (19)C9—C8—H8B108.7
C3—N1—H01111 (2)H8A—C8—H8B107.6
C4—N1—H01107 (2)N3—C9—C8113.3 (3)
Zn1—N1—H01102 (2)N3—C9—H9A108.9
C7—N2—C6115.0 (3)C8—C9—H9A108.9
C7—N2—Zn1118.0 (2)N3—C9—H9B108.9
C6—N2—Zn1110.3 (2)C8—C9—H9B108.9
C7—N2—H02105 (2)H9A—C9—H9B107.7
C6—N2—H02101 (2)O1—C10—O2111.6 (2)
Zn1—N2—H02105 (2)O1—C10—O3111.6 (3)
C1—N3—C9111.5 (2)O2—C10—O3110.8 (3)
C1—N3—Zn1112.41 (18)O1—C10—H10107.5
C9—N3—Zn1119.17 (19)O2—C10—H10107.5
C1—N3—H03106 (2)O3—C10—H10107.5
C9—N3—H03109 (2)O1—C11—C12108.5 (2)
Zn1—N3—H0397 (2)O1—C11—C1106.1 (2)
C10—O1—C11110.5 (2)C12—C11—C1113.6 (2)
C10—O2—C13111.0 (2)O1—C11—H11109.5
C10—O3—C2111.0 (2)C12—C11—H11109.5
C12—O4—Zn1i135.25 (17)C1—C11—H11109.5
C12—O4—Zn1121.35 (16)O4—C12—C13111.7 (2)
Zn1i—O4—Zn1103.01 (8)O4—C12—C11111.3 (2)
N3—C1—C11113.5 (2)C13—C12—C11107.0 (2)
N3—C1—C2113.6 (2)O4—C12—H12108.9
C11—C1—C2107.0 (2)C13—C12—H12108.9
N3—C1—H1107.5C11—C12—H12108.9
C11—C1—H1107.5O2—C13—C12107.9 (2)
C2—C1—H1107.5O2—C13—C3106.3 (2)
O3—C2—C1105.5 (2)C12—C13—C3113.4 (2)
O3—C2—C3105.9 (2)O2—C13—H13109.7
C1—C2—C3115.8 (2)C12—C13—H13109.7
O3—C2—H2109.8C3—C13—H13109.7
C1—C2—H2109.8N4—Zn2—Cl1103.78 (7)
C3—C2—H2109.8N4—Zn2—Cl2102.62 (7)
N1—C3—C13112.2 (2)Cl1—Zn2—Cl2117.04 (4)
N1—C3—C2114.6 (2)N4—Zn2—Cl3108.25 (7)
C13—C3—C2106.9 (2)Cl1—Zn2—Cl3113.08 (4)
N1—C3—H3107.6Cl2—Zn2—Cl3110.89 (3)
C13—C3—H3107.6C20—N4—C24118.3 (3)
C2—C3—H3107.6C20—N4—Zn2119.5 (2)
N1—C4—C5113.1 (3)C24—N4—Zn2122.0 (2)
N1—C4—H4A109.0N4—C20—C21122.2 (3)
C5—C4—H4A109.0N4—C20—H20118.9
N1—C4—H4B109.0C21—C20—H20118.9
C5—C4—H4B109.0C22—C21—C20119.2 (3)
H4A—C4—H4B107.8C22—C21—H21120.4
C6—C5—C4122.8 (3)C20—C21—H21120.4
C6—C5—H5A106.6C21—C22—C23119.2 (3)
C4—C5—H5A106.6C21—C22—H22120.4
C6—C5—H5B106.6C23—C22—H22120.4
C4—C5—H5B106.6C22—C23—C24118.3 (3)
H5A—C5—H5B106.6C22—C23—H23120.8
C5—C6—N2118.1 (3)C24—C23—H23120.8
C5—C6—H6A107.8N4—C24—C23122.8 (3)
N2—C6—H6A107.8N4—C24—H24118.6
C5—C6—H6B107.8C23—C24—H24118.6
O4i—Zn1—N1—C3118.42 (19)Zn1—N2—C6—C555.2 (5)
N3—Zn1—N1—C337.7 (2)C6—N2—C7—C8172.4 (3)
O4—Zn1—N1—C349.89 (19)Zn1—N2—C7—C839.5 (3)
N2—Zn1—N1—C3136.80 (19)N2—C7—C8—C979.1 (4)
O4i—Zn1—N1—C4114.5 (2)C1—N3—C9—C8165.2 (3)
N3—Zn1—N1—C489.4 (2)Zn1—N3—C9—C831.7 (4)
O4—Zn1—N1—C4176.9 (2)C7—C8—C9—N374.4 (4)
N2—Zn1—N1—C49.8 (2)C11—O1—C10—O262.5 (3)
O4i—Zn1—N2—C7132.1 (2)C11—O1—C10—O362.1 (3)
N1—Zn1—N2—C792.6 (2)C13—O2—C10—O162.5 (3)
N3—Zn1—N2—C76.3 (2)C13—O2—C10—O362.6 (3)
O4i—Zn1—N2—C693.0 (2)C2—O3—C10—O162.1 (3)
N1—Zn1—N2—C642.3 (2)C2—O3—C10—O263.0 (3)
N3—Zn1—N2—C6141.3 (2)C10—O1—C11—C1260.4 (3)
O4i—Zn1—N3—C1120.27 (18)C10—O1—C11—C162.1 (3)
N1—Zn1—N3—C139.1 (2)N3—C1—C11—O1171.3 (2)
O4—Zn1—N3—C147.36 (19)C2—C1—C11—O162.6 (3)
N2—Zn1—N3—C1135.62 (19)N3—C1—C11—C1269.6 (3)
O4i—Zn1—N3—C9106.5 (2)C2—C1—C11—C1256.5 (3)
N1—Zn1—N3—C994.1 (2)Zn1i—O4—C12—C13128.5 (2)
O4—Zn1—N3—C9179.4 (2)Zn1—O4—C12—C1360.0 (3)
N2—Zn1—N3—C92.4 (2)Zn1i—O4—C12—C11112.0 (3)
O4i—Zn1—O4—C12173.9 (3)Zn1—O4—C12—C1159.5 (3)
N1—Zn1—O4—C1249.7 (2)O1—C11—C12—O4179.6 (2)
N3—Zn1—O4—C1248.5 (2)C1—C11—C12—O462.6 (3)
O4i—Zn1—O4—Zn1i0.0O1—C11—C12—C1358.1 (3)
N1—Zn1—O4—Zn1i136.38 (10)C1—C11—C12—C1359.6 (3)
N3—Zn1—O4—Zn1i125.39 (11)C10—O2—C13—C1260.1 (3)
C9—N3—C1—C11157.1 (3)C10—O2—C13—C361.8 (3)
Zn1—N3—C1—C1166.1 (3)O4—C12—C13—O2179.6 (2)
C9—N3—C1—C280.4 (3)C11—C12—C13—O257.6 (3)
Zn1—N3—C1—C256.4 (3)O4—C12—C13—C362.2 (3)
C10—O3—C2—C161.2 (3)C11—C12—C13—C359.8 (3)
C10—O3—C2—C362.0 (3)N1—C3—C13—O2172.2 (2)
N3—C1—C2—O3172.1 (2)C2—C3—C13—O261.3 (3)
C11—C1—C2—O361.9 (3)N1—C3—C13—C1269.4 (3)
N3—C1—C2—C371.3 (3)C2—C3—C13—C1257.0 (3)
C11—C1—C2—C354.8 (3)Cl1—Zn2—N4—C20161.8 (2)
C4—N1—C3—C13163.7 (3)Cl2—Zn2—N4—C2039.5 (2)
Zn1—N1—C3—C1368.3 (3)Cl3—Zn2—N4—C2077.8 (2)
C4—N1—C3—C274.1 (3)Cl1—Zn2—N4—C2412.4 (2)
Zn1—N1—C3—C253.9 (3)Cl2—Zn2—N4—C24134.7 (2)
O3—C2—C3—N1173.6 (2)Cl3—Zn2—N4—C24108.0 (2)
C1—C2—C3—N169.9 (3)C24—N4—C20—C210.3 (5)
O3—C2—C3—C1361.4 (3)Zn2—N4—C20—C21174.7 (3)
C1—C2—C3—C1355.1 (3)N4—C20—C21—C221.0 (5)
C3—N1—C4—C5176.3 (3)C20—C21—C22—C232.0 (5)
Zn1—N1—C4—C555.9 (4)C21—C22—C23—C242.1 (5)
N1—C4—C5—C658.2 (6)C20—N4—C24—C230.5 (5)
C4—C5—C6—N26.7 (7)Zn2—N4—C24—C23174.7 (2)
C7—N2—C6—C581.3 (5)C22—C23—C24—N41.4 (5)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···Cl3i0.81 (2)2.66 (2)3.449 (3)165 (3)
N2—H02···Cl2ii0.80 (2)2.72 (3)3.356 (3)138 (3)
N3—H03···Cl30.82 (2)2.52 (2)3.325 (3)172 (3)
C3—H3···Cl1iii1.002.703.664 (3)162
C23—H23···Cl1iv0.952.753.638 (3)156
C24—H24···Cl10.952.903.483 (3)121
C4—H4A···Cl2v0.992.733.653 (4)155
C7—H7A···Cl2v0.992.903.856 (3)164
C7—H7B···Cl2ii0.992.853.514 (3)125
C5—H5B···O1iii0.992.483.257 (4)135
C20—H20···O2vi0.952.473.203 (4)134
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn2(C13H22N3O4)2][ZnCl3(C5H4N)]2
Mr1201.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)143
a, b, c (Å)9.5416 (15), 17.491 (2), 14.098 (3)
β (°) 104.366 (10)
V3)2279.2 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.49
Crystal size (mm)0.5 × 0.45 × 0.15
Data collection
DiffractometerStoe STADI-4
diffractometer
Absorption correctionψ scans
(XEMP; Siemens, 1994)
Tmin, Tmax0.670, 0.984
No. of measured, independent and
observed [I > 2s(I)] reflections
8250, 4031, 3390
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 1.04
No. of reflections4031
No. of parameters292
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.38

Computer programs: DIF4 (Stoe & Cie, 1992), DIF4, REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
Zn1—O4i1.9590 (19)Zn2—N42.070 (2)
Zn1—N12.082 (2)Zn2—Cl12.2314 (9)
Zn1—N32.083 (3)Zn2—Cl22.2496 (9)
Zn1—O42.0860 (19)Zn2—Cl32.2615 (9)
Zn1—N22.106 (3)
O4i—Zn1—N1133.76 (9)C1—N3—C9111.5 (2)
O4i—Zn1—N3123.80 (10)C1—N3—Zn1112.41 (18)
N1—Zn1—N398.10 (10)C9—N3—Zn1119.17 (19)
O4i—Zn1—O476.99 (8)C12—O4—Zn1i135.25 (17)
N1—Zn1—O486.78 (9)C12—O4—Zn1121.35 (16)
N3—Zn1—O488.04 (9)Zn1i—O4—Zn1103.01 (8)
O4i—Zn1—N296.93 (9)N4—Zn2—Cl1103.78 (7)
N1—Zn1—N295.22 (10)N4—Zn2—Cl2102.62 (7)
N3—Zn1—N298.26 (10)Cl1—Zn2—Cl2117.04 (4)
O4—Zn1—N2173.04 (9)N4—Zn2—Cl3108.25 (7)
C3—N1—C4111.2 (2)Cl1—Zn2—Cl3113.08 (4)
C3—N1—Zn1112.64 (18)Cl2—Zn2—Cl3110.89 (3)
C4—N1—Zn1112.96 (19)C20—N4—C24118.3 (3)
C7—N2—C6115.0 (3)C20—N4—Zn2119.5 (2)
C7—N2—Zn1118.0 (2)C24—N4—Zn2122.0 (2)
C6—N2—Zn1110.3 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···Cl3i0.81 (2)2.66 (2)3.449 (3)165 (3)
N2—H02···Cl2ii0.80 (2)2.72 (3)3.356 (3)138 (3)
N3—H03···Cl30.82 (2)2.52 (2)3.325 (3)172 (3)
C3—H3···Cl1iii1.002.703.664 (3)162
C23—H23···Cl1iv0.952.753.638 (3)156
C24—H24···Cl10.952.903.483 (3)121
C4—H4A···Cl2v0.992.733.653 (4)155
C7—H7A···Cl2v0.992.903.856 (3)164
C7—H7B···Cl2ii0.992.853.514 (3)125
C5—H5B···O1iii0.992.483.257 (4)135
C20—H20···O2vi0.952.473.203 (4)134
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2; (vi) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds