Download citation
Download citation
link to html
The title compound, [Cd(μ-SCN)2(C7H7NO2)2]n, has been prepared from the reaction of 3-amino­benzoic acid, NH4SCN and Cd(NO3)2·6H2O in MeOH/H2O. It consists of one-dimensional polymeric chains, which are extended into a two-dimensional layer structure by head-to-head hydrogen bonds involving carboxyl groups from adjacent chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803004926/cf6242sup1.cif
Contains datablocks I, CdSCN

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803004926/cf6242Isup2.hkl
Contains datablock I

CCDC reference: 209883

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.069
  • wR factor = 0.042
  • Data-to-parameter ratio = 13.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_420 Alert C D-H Without Acceptor N(11) - H(11A) ? PLAT_420 Alert C D-H Without Acceptor N(21) - H(21A) ?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Crystal engineering of inorganic/organic hybrid materials is currently of great interest, owing to their interesting structural topologies and potential application in material science, such as ion-exchange, adsorption, molecular recognition, catalysis and magnetism (Aakeroy et al., 1999; Hagrman et al., 1999). Considerable effort has been devoted to supramolecular networks organized and held together by means of coordination covalent bonds, hydrogen bonds, and their combination, because of the strength, directionality and complementarity of coordination bonds and hydrogen bonds, as well as extensive applications of hydrogen-bonded complexes in crystal engineering (Carlucci et al., 1997; Dong et al., 2000; Moulton & Zaworotko, 2001). A number of promising supramolecular complexes have been designed and constructed from mononuclear (Kuehl et al., 2001; Pan et al., 2001) or polynuclear coordination complexes (Copp et al., 1993; Liang et al., 2001) and lower-dimensional coordination polymers (Chen & Chen, 2002; Dong et al., 2000; Goher & Mautner, 2001; Prior & Rosseinsky, 2001) through using hydrogen bonds as linkers. Here we report a hydrogen-bonded two-dimensional complex, [Cd(µ-SCN-N,S)2(HL)2]n (HL = 3-aminobenzoic acid), constructed from one-dimensional polymeric chains via head-to-head carboxylic acid hydrogen bonds.

The single-crystal X-ray diffraction analysis reveals that the title compound contains HL ligands attached to polymeric cadmium-thiocyanate chains in a trans arrangement. As shown in Fig. 1, each Cd(II) is in a distorted octahedral environment and is coordinated by two nitrogen atoms from HL ligands, two independent thiocyanate sulfur atoms and another two thiocyanate nitrogen atoms. Each pair of adjacent Cd(II) atoms is bridged by two independent SCN- ligands to form a one-dimensional cadmium-thiocyanate chain consisting of eight-membered (N—C—S—Cd)2 rings. The Cd···Cd separation in the eight-membered rings is 5.8547 (2) Å, which is close to those in cadmium-thiocyanate chains (Chen et al., 1999; Chen & Chen, 2002; Taniguchi et al., 1986; Taniguchi et al., 1987). The bond distances of Cd—NHL [2.249 (5) and 2.296 (5) Å] are longer than that of Cd—NSCN [2.375 (4) and 2.386 (4) Å]. The bond distances of Cd—S are 2.7001 (14) and 2.8054 (14) Å, comparable with those in the above cadmium-thiocyanate complexes. The remaining two positions around the six-coordinate Cd(II) centers in the polymeric chain are occupied by nitrogen atoms of two independent HL ligands with a N11—Cd—N21 bond angle of 170.50 (2)°. The carboxylic acid groups in the HL ligands are connected via head-to-head O—H···O hydrogen bonds [R22(8) in graph set notation (Bernstein et al., 1995)], connecting one-dimensional [Cd(SCN)2(HL)2]n chains into an infinite two-dimensional layer structure. There are no short contacts or noteworthy aryl-aryl interactions between adjacent chains or between neighboring layers.

Experimental top

A solution of Cd(NO3)2·6H2O (0.15 g, 0.5 mmol) and NH4SCN (0.08 g, 1 mmol) in H2O (5 ml) was added slowly to a solution of HL (0.07 g, 0.5 mmol) in MeOH (10 ml). The reaction mixture was stirred for 30 min. and gave a colorless solution, which was filtered. Pale yellow crystals of the title compound were obtained by leaving the resulting solution in air for 2–3 weeks.

Refinement top

The positions of hydrogen atoms were generated geometrically (C—H = 0.93–0.96, N—H = 0.90, O—H = 0.82 Å), assigned isotropic displacement parameters and allowed to ride on their parent atoms.

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A section of the one-dimensional chain of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Hydrogen bonds between adjacent chains, forming a two-dimensional layer.
(I) top
Crystal data top
C16H14CdN4O4S2F(000) = 1000
Mr = 502.83Dx = 1.740 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.6733 (1) ÅCell parameters from 82 reflections
b = 5.8547 (2) Åθ = 1.7–25.0°
c = 22.3503 (5) ŵ = 1.38 mm1
β = 90.730 (2)°T = 293 K
V = 1919.91 (8) Å3Plate, pale yellow
Z = 40.50 × 0.30 × 0.08 mm
Data collection top
Bruker SMART CCD
diffractometer
3372 independent reflections
Radiation source: fine-focus sealed tube2508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scanθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1517
Tmin = 0.614, Tmax = 0.895k = 46
6782 measured reflectionsl = 1826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0439P)2 + 4.0666P]
where P = (Fo2 + 2Fc2)/3
3372 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
C16H14CdN4O4S2V = 1919.91 (8) Å3
Mr = 502.83Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.6733 (1) ŵ = 1.38 mm1
b = 5.8547 (2) ÅT = 293 K
c = 22.3503 (5) Å0.50 × 0.30 × 0.08 mm
β = 90.730 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3372 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2508 reflections with I > 2σ(I)
Tmin = 0.614, Tmax = 0.895Rint = 0.034
6782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.042H-atom parameters constrained
S = 1.07Δρmax = 1.15 e Å3
3372 reflectionsΔρmin = 0.91 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.36854 (3)1.19533 (7)0.127008 (16)0.03905 (16)
S10.36983 (12)1.9453 (2)0.01995 (6)0.0534 (4)
S20.34204 (10)0.4355 (2)0.22843 (6)0.0454 (4)
O110.6605 (4)1.8783 (10)0.31047 (19)0.0942 (19)
H110.65961.88970.34700.141*
O120.5917 (3)1.5517 (8)0.33102 (18)0.0723 (14)
O210.0847 (3)1.8344 (8)0.05566 (18)0.0704 (14)
H210.09111.85310.09170.106*
O220.1564 (3)1.5090 (8)0.07626 (17)0.0666 (13)
N10.3709 (4)1.5019 (8)0.0663 (2)0.0517 (13)
N20.3834 (4)0.8721 (8)0.1845 (2)0.0491 (12)
N110.5311 (3)1.1962 (8)0.12753 (18)0.0444 (11)
H11A0.54971.07590.14960.053*
H11B0.54901.17000.08980.053*
N210.2090 (3)1.1290 (8)0.12274 (19)0.0434 (11)
H21A0.19791.01100.09790.052*
H21B0.19021.08820.15940.052*
C10.3708 (3)1.6850 (9)0.0478 (2)0.0346 (11)
C20.3665 (3)0.6914 (10)0.2019 (2)0.0352 (12)
C110.6269 (4)1.6892 (12)0.2951 (2)0.0490 (15)
C120.6268 (4)1.6347 (10)0.2301 (2)0.0416 (13)
C130.5841 (3)1.4385 (10)0.2097 (2)0.0416 (13)
H13A0.55801.33780.23680.050*
C140.5802 (3)1.3925 (9)0.1488 (2)0.0362 (12)
C150.6206 (4)1.5416 (10)0.1095 (2)0.0461 (14)
H15A0.61711.51270.06860.055*
C160.6659 (4)1.7321 (10)0.1298 (2)0.0466 (14)
H16A0.69491.82760.10280.056*
C170.6687 (4)1.7830 (10)0.1904 (2)0.0433 (13)
H17A0.69811.91380.20420.052*
C210.1189 (4)1.6441 (11)0.0403 (2)0.0476 (15)
C220.1131 (3)1.5775 (10)0.0236 (2)0.0405 (13)
C230.1571 (3)1.3802 (10)0.0430 (2)0.0405 (13)
H23A0.18691.28770.01560.049*
C240.1565 (3)1.3210 (10)0.1030 (2)0.0391 (12)
C250.1106 (4)1.4582 (10)0.1428 (2)0.0466 (14)
H25A0.11061.41980.18320.056*
C260.0650 (4)1.6501 (11)0.1238 (2)0.0517 (16)
H26A0.03301.73870.15090.062*
C270.0669 (4)1.7113 (10)0.0638 (2)0.0465 (14)
H27A0.03701.84270.05080.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.0572 (3)0.0253 (2)0.0346 (2)0.0008 (2)0.00184 (17)0.00144 (18)
S10.1033 (13)0.0260 (7)0.0310 (7)0.0010 (8)0.0080 (8)0.0018 (6)
S20.0736 (10)0.0307 (8)0.0321 (7)0.0061 (7)0.0094 (7)0.0000 (6)
O110.132 (4)0.111 (4)0.040 (2)0.070 (4)0.018 (3)0.025 (3)
O120.106 (4)0.076 (3)0.035 (2)0.035 (3)0.010 (2)0.006 (2)
O210.092 (3)0.079 (4)0.041 (2)0.032 (3)0.002 (2)0.015 (2)
O220.078 (3)0.086 (3)0.036 (2)0.038 (3)0.007 (2)0.010 (2)
N10.084 (4)0.033 (3)0.038 (3)0.001 (3)0.000 (2)0.000 (2)
N20.080 (4)0.030 (3)0.037 (3)0.004 (2)0.000 (2)0.005 (2)
N110.062 (3)0.040 (3)0.031 (2)0.005 (2)0.002 (2)0.006 (2)
N210.058 (3)0.039 (3)0.033 (2)0.004 (2)0.004 (2)0.007 (2)
C10.045 (3)0.030 (3)0.028 (3)0.002 (3)0.000 (2)0.005 (2)
C20.045 (3)0.035 (3)0.025 (2)0.011 (3)0.000 (2)0.005 (2)
C110.044 (3)0.066 (4)0.037 (3)0.014 (3)0.005 (2)0.016 (3)
C120.041 (3)0.052 (4)0.032 (3)0.003 (3)0.000 (2)0.006 (3)
C130.041 (3)0.049 (4)0.035 (3)0.002 (3)0.002 (2)0.001 (3)
C140.037 (3)0.040 (3)0.032 (3)0.008 (2)0.002 (2)0.007 (2)
C150.055 (3)0.054 (4)0.030 (3)0.007 (3)0.003 (2)0.004 (3)
C160.052 (3)0.053 (4)0.035 (3)0.005 (3)0.006 (3)0.004 (3)
C170.045 (3)0.043 (3)0.042 (3)0.005 (3)0.001 (2)0.008 (3)
C210.046 (3)0.063 (4)0.033 (3)0.007 (3)0.002 (3)0.011 (3)
C220.037 (3)0.047 (3)0.037 (3)0.000 (3)0.006 (2)0.005 (3)
C230.041 (3)0.050 (3)0.031 (3)0.000 (3)0.001 (2)0.002 (2)
C240.040 (3)0.043 (3)0.033 (3)0.004 (3)0.005 (2)0.001 (3)
C250.055 (3)0.054 (4)0.030 (3)0.002 (3)0.001 (2)0.005 (3)
C260.057 (4)0.065 (4)0.032 (3)0.011 (3)0.004 (3)0.002 (3)
C270.050 (3)0.048 (3)0.041 (3)0.008 (3)0.006 (3)0.004 (3)
Geometric parameters (Å, º) top
Cd—N12.250 (5)N21—H21B0.900
Cd—N22.297 (5)C11—C121.487 (7)
Cd—N212.374 (4)C12—C131.383 (7)
Cd—N112.386 (4)C12—C171.390 (8)
Cd—S2i2.700 (1)C13—C141.388 (7)
Cd—S1ii2.805 (1)C13—H13A0.930
S1—C11.646 (6)C14—C151.378 (7)
S1—Cdi2.8053 (14)C15—C161.373 (8)
S2—C21.652 (6)C15—H15A0.930
S2—Cdii2.7000 (14)C16—C171.386 (7)
O11—C111.258 (7)C16—H16A0.930
O11—H110.820C17—H17A0.930
O12—C111.253 (7)C21—C221.484 (7)
O21—C211.268 (7)C22—C271.378 (8)
O21—H210.820C22—C231.390 (7)
O22—C211.259 (7)C23—C241.385 (7)
N1—C11.149 (6)C23—H23A0.930
N2—C21.155 (6)C24—C251.381 (7)
N11—C141.434 (7)C25—C261.373 (8)
N11—H11A0.900C25—H25A0.930
N11—H11B0.900C26—C271.388 (7)
N21—C241.429 (7)C26—H26A0.930
N21—H21A0.900C27—H27A0.930
N1—Cd—N2173.02 (18)C13—C12—C11119.6 (5)
N1—Cd—N2197.39 (17)C17—C12—C11119.7 (5)
N2—Cd—N2188.53 (16)C12—C13—C14119.8 (5)
N1—Cd—N1188.77 (17)C12—C13—H13A120.1
N2—Cd—N1184.90 (17)C14—C13—H13A120.1
N21—Cd—N11170.49 (16)C15—C14—C13119.4 (5)
N1—Cd—S2i95.41 (12)C15—C14—N11120.9 (5)
N2—Cd—S2i88.45 (12)C13—C14—N11119.7 (5)
N21—Cd—S2i88.07 (11)C16—C15—C14120.9 (5)
N11—Cd—S2i98.60 (10)C16—C15—H15A119.5
N1—Cd—S1ii84.35 (12)C14—C15—H15A119.5
N2—Cd—S1ii92.63 (12)C15—C16—C17120.4 (5)
N21—Cd—S1ii84.13 (11)C15—C16—H16A119.8
N11—Cd—S1ii89.29 (10)C17—C16—H16A119.8
S2i—Cd—S1ii172.10 (5)C16—C17—C12118.8 (5)
C1—S1—Cdi99.24 (17)C16—C17—H17A120.6
C2—S2—Cdii97.84 (17)C12—C17—H17A120.6
C11—O11—H11109.5O22—C21—O21123.7 (5)
C21—O21—H21109.5O22—C21—C22118.7 (5)
C1—N1—Cd164.0 (4)O21—C21—C22117.6 (5)
C2—N2—Cd157.4 (4)C27—C22—C23119.9 (5)
C14—N11—Cd120.0 (3)C27—C22—C21120.9 (5)
C14—N11—H11A107.3C23—C22—C21119.1 (5)
Cd—N11—H11A107.3C24—C23—C22120.1 (5)
C14—N11—H11B107.3C24—C23—H23A119.9
Cd—N11—H11B107.3C22—C23—H23A119.9
H11A—N11—H11B106.9C25—C24—C23119.2 (5)
C24—N21—Cd114.2 (3)C25—C24—N21121.5 (5)
C24—N21—H21A108.7C23—C24—N21119.1 (5)
Cd—N21—H21A108.7C26—C25—C24121.0 (5)
C24—N21—H21B108.7C26—C25—H25A119.5
Cd—N21—H21B108.7C24—C25—H25A119.5
H21A—N21—H21B107.6C25—C26—C27119.7 (5)
N1—C1—S1178.8 (5)C25—C26—H26A120.2
N2—C2—S2178.6 (5)C27—C26—H26A120.2
O12—C11—O11123.6 (5)C22—C27—C26120.0 (5)
O12—C11—C12119.6 (5)C22—C27—H27A120.0
O11—C11—C12116.8 (6)C26—C27—H27A120.0
C13—C12—C17120.7 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O22iii0.821.822.618 (6)166
O21—H21···O12iv0.821.812.622 (5)169
Symmetry codes: (iii) x+1/2, y+7/2, z+1/2; (iv) x1/2, y+7/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H14CdN4O4S2
Mr502.83
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.6733 (1), 5.8547 (2), 22.3503 (5)
β (°) 90.730 (2)
V3)1919.91 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.50 × 0.30 × 0.08
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.614, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
6782, 3372, 2508
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.042, 1.07
No. of reflections3372
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 0.91

Computer programs: SMART (Siemens, 1994), SMART, SAINT (Siemens, 1994), SHELXTL (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Cd—N12.250 (5)Cd—S1ii2.805 (1)
Cd—N22.297 (5)O11—C111.258 (7)
Cd—N212.374 (4)O12—C111.253 (7)
Cd—N112.386 (4)O21—C211.268 (7)
Cd—S2i2.700 (1)O22—C211.259 (7)
N1—Cd—N2173.02 (18)N11—Cd—S2i98.60 (10)
N1—Cd—N2197.39 (17)N1—Cd—S1ii84.35 (12)
N2—Cd—N2188.53 (16)N2—Cd—S1ii92.63 (12)
N1—Cd—N1188.77 (17)N21—Cd—S1ii84.13 (11)
N2—Cd—N1184.90 (17)N11—Cd—S1ii89.29 (10)
N21—Cd—N11170.49 (16)S2i—Cd—S1ii172.10 (5)
N1—Cd—S2i95.41 (12)O12—C11—O11123.6 (5)
N2—Cd—S2i88.45 (12)O22—C21—O21123.7 (5)
N21—Cd—S2i88.07 (11)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O22iii0.821.822.618 (6)166
O21—H21···O12iv0.821.812.622 (5)169
Symmetry codes: (iii) x+1/2, y+7/2, z+1/2; (iv) x1/2, y+7/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds