Download citation
Download citation
link to html
The title di­methyl­hydrazide o-FC6H4C(O)NHNMe2, or C9H11FN2O, is compared structurally both with other aroyl hydrazides, ArC(O)NHNH2, and with related tri­methyl­ammonio yl­ides, Me3N(+)-N(-)C(O)Ar.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803005634/cf6244sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803005634/cf6244Isup2.hkl
Contains datablock I

CCDC reference: 209960

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.116
  • Data-to-parameter ratio = 14.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The title compound, (I), was prepared as a precurser to the corresponding trimethylammonio-stabilized nitrogen ylide Me3N(+)—N(-)—C(O)C6H4—F-o. Its structure was determined in the course of an investigation into the ability of nitrogen ylides to act as ligands with transition metals (Morris et al., 2003).

The presence of the ortho-fluoro substituent causes (I) to adopt a conformation (Fig. 1) which precludes conjugation across the C6—C7 bond [C1—C6—C7—N1 = 122.5 (2)°]. Possibly as a result, the C6—C7 bond [1.509 (2) Å] is 0.02 Å longer than the database average value obtained by Orpen et al. (1992) for such bonds, whereas all other bond lengths in (I) agree within 0.008 Å with appropriate average values from the Cambridge Structural Database (Allen, 2002). Phenylhydrazides, in general, adopt much flatter conformations than that found in (I). For example, in PhC(O)NHNH2, (II), the C(Ph)—C(Ph)—C(O)—N torsion angle is 30° (Kallel et al., 1992), while in o-HOC6H4C(O)NHNH2, (III), the corresponding angle is only 3° (Mikenda et al., 1993). In (I), the C6—C7—N1—N2 torsion angle is 175.9 (1)°. Corresponding values in other hydrazides are almost invariably close to 180°; the only exception we are aware of is provided by Ph(CO)NMeNMe2, where this torsion angle is only 8.5° (Knapp et al., 1981), presumably for steric reasons. In (I), the N—N distance [1.420 (2) Å] and C—N—N angle [119.8 (1)°] are typical of hydrazides, such as (II) and (III), whereas in the closely related Me3N(+)—N(-)C(O)Ar ylides, the N—N distances are longer and the C—N—N angles more acute, e.g. 1.470 (3) Å and 114.2 (3)° when Ar = Ph (Cameron et al., 1972), and 1.474 (1) Å and 174.8 (1)° when Ar = p-Cl–C6H4 (Morris et al., 2003). QUEST and CONQUEST search programs were used with Version 5.24 of the Cambridge Structural Database (Allen, 2002) to obtain some torsion angles not given by the original authors.

Glide-plane-related molecules connected by N—H···O hydrogen bonds (Fig. 2) form stacks which run parallel to the b axis. These stacks pack so that alternate layers parallel to (001) contain, respectively, aromatic rings and terminal NMe2 groups, as can be seen by viewing the contents of the unit cell in projection down the a axis (Fig. 3). As expected (Glusker et al., 1994), the F atoms do not participate in the hydrogen bonding.

The atomic Uij values are moderately well reproduced by a TLS analysis (Schomacher & Trueblood, 1968): R2 = (ΣΔU2/ΣU2)1/2 = 0.10; they also pass the Hirshfeld (1976) rigid-bond test, the worst discrepancy being ΔU = 0.0018 (12) Å2 for C4—C5.

Experimental top

The title compound was prepared by the method of Smith et al. (1968).

Refinement top

All H atoms were initially located from difference syntheses. The H atom bonded to N1 was freely refined. Other H atoms were positioned geometrically and refined with riding constraints, assuming C—H bond lengths of 0.93 and 0.96 Å, respectively, for sp2 and sp3 C atoms. In the case of each of the two methyl groups, a single orientation parameter was also refined.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I), shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of a stack of hydrogen-bonded molecules related by the b-glide plane normal to the a axis. The direction of view is down the a axis and b runs from left to right in the plane of the drawing.
[Figure 3] Fig. 3. The unit-cell contents, viewed in projection down the a axis.
(I) top
Crystal data top
C9H11FN2OF(000) = 768
Mr = 182.2Dx = 1.303 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1794 reflections
a = 11.8503 (5) Åθ = 2.9–26.0°
b = 7.8530 (3) ŵ = 0.10 mm1
c = 19.9630 (9) ÅT = 100 K
V = 1857.77 (13) Å3Needle, colourless
Z = 80.40 × 0.05 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.057
thick–slices ω and ϕ scansθmax = 25.9°, θmin = 3.3°
6796 measured reflectionsh = 1414
1797 independent reflectionsk = 99
1491 reflections with I > 2σ(I)l = 2424
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.048P)2 + 0.85P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.23 e Å3
1797 reflectionsΔρmin = 0.25 e Å3
124 parameters
Crystal data top
C9H11FN2OV = 1857.77 (13) Å3
Mr = 182.2Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.8503 (5) ŵ = 0.10 mm1
b = 7.8530 (3) ÅT = 100 K
c = 19.9630 (9) Å0.40 × 0.05 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1491 reflections with I > 2σ(I)
6796 measured reflectionsRint = 0.057
1797 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.23 e Å3
1797 reflectionsΔρmin = 0.25 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.04440 (14)0.0364 (2)0.31315 (8)0.0242 (4)
C20.01463 (14)0.0441 (2)0.25446 (9)0.0275 (4)
H20.0560.09420.24950.033*
C30.09321 (15)0.0482 (2)0.20276 (8)0.0285 (4)
H30.07470.09920.16220.034*
C40.19926 (15)0.0235 (2)0.21152 (9)0.0283 (4)
H40.25160.02030.17680.034*
C50.22732 (14)0.0997 (2)0.27185 (8)0.0252 (4)
H50.29920.1450.27770.03*
C60.14924 (13)0.1093 (2)0.32376 (8)0.0217 (4)
C70.17407 (14)0.2139 (2)0.38546 (8)0.0220 (4)
C80.25331 (19)0.1700 (3)0.53962 (9)0.0384 (5)
H8A0.17230.16780.53820.058*
H8B0.27760.23340.57810.058*
H8C0.28150.05560.54250.058*
C90.41985 (17)0.2554 (3)0.47847 (10)0.0395 (5)
H9A0.44880.14150.48140.059*
H9B0.44620.32060.51610.059*
H9C0.44560.30730.43770.059*
F10.03368 (8)0.04377 (14)0.36335 (5)0.0329 (3)
N10.26030 (13)0.15704 (18)0.42201 (7)0.0253 (3)
H10.2893 (17)0.051 (3)0.4152 (10)0.034 (5)*
N20.29666 (13)0.25077 (19)0.47890 (7)0.0273 (4)
O10.11979 (10)0.34444 (15)0.39699 (6)0.0279 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (8)0.0247 (8)0.0278 (9)0.0017 (7)0.0018 (7)0.0009 (7)
C20.0199 (8)0.0294 (9)0.0332 (9)0.0004 (7)0.0047 (7)0.0045 (7)
C30.0281 (9)0.0311 (9)0.0263 (9)0.0038 (8)0.0055 (7)0.0055 (7)
C40.0265 (9)0.0326 (9)0.0260 (9)0.0013 (7)0.0021 (7)0.0004 (7)
C50.0203 (8)0.0273 (9)0.0280 (8)0.0017 (7)0.0012 (7)0.0005 (7)
C60.0208 (8)0.0195 (8)0.0248 (8)0.0015 (6)0.0028 (7)0.0013 (6)
C70.0211 (8)0.0210 (8)0.0239 (8)0.0026 (6)0.0004 (6)0.0020 (6)
C80.0498 (12)0.0378 (10)0.0275 (9)0.0050 (9)0.0023 (9)0.0040 (8)
C90.0332 (10)0.0449 (11)0.0405 (11)0.0068 (9)0.0097 (9)0.0056 (9)
F10.0235 (5)0.0414 (6)0.0338 (6)0.0067 (5)0.0068 (4)0.0083 (4)
N10.0301 (8)0.0192 (7)0.0267 (7)0.0030 (6)0.0073 (6)0.0043 (6)
N20.0313 (8)0.0252 (7)0.0254 (7)0.0001 (7)0.0088 (6)0.0043 (6)
O10.0256 (6)0.0250 (6)0.0331 (7)0.0028 (5)0.0046 (5)0.0053 (5)
Geometric parameters (Å, º) top
C1—F11.3653 (19)C7—O11.232 (2)
C1—C21.377 (2)C7—N11.333 (2)
C1—C61.384 (2)C8—N21.462 (2)
C2—C31.390 (3)C8—H8A0.96
C2—H20.93C8—H8B0.96
C3—C41.388 (3)C8—H8C0.96
C3—H30.93C9—N21.460 (2)
C4—C51.385 (2)C9—H9A0.96
C4—H40.93C9—H9B0.96
C5—C61.391 (2)C9—H9C0.96
C5—H50.93N1—N21.4202 (19)
C6—C71.509 (2)N1—H10.91 (2)
F1—C1—C2118.06 (15)N1—C7—C6114.46 (14)
F1—C1—C6118.58 (14)N2—C8—H8A109.5
C2—C1—C6123.36 (16)N2—C8—H8B109.5
C1—C2—C3118.07 (16)H8A—C8—H8B109.5
C1—C2—H2121N2—C8—H8C109.5
C3—C2—H2121H8A—C8—H8C109.5
C4—C3—C2120.23 (16)H8B—C8—H8C109.5
C4—C3—H3119.9N2—C9—H9A109.5
C2—C3—H3119.9N2—C9—H9B109.5
C5—C4—C3120.13 (16)H9A—C9—H9B109.5
C5—C4—H4119.9N2—C9—H9C109.5
C3—C4—H4119.9H9A—C9—H9C109.5
C4—C5—C6120.75 (16)H9B—C9—H9C109.5
C4—C5—H5119.6C7—N1—N2119.79 (14)
C6—C5—H5119.6C7—N1—H1120.9 (13)
C1—C6—C5117.42 (15)N2—N1—H1118.6 (13)
C1—C6—C7121.66 (15)N1—N2—C9108.16 (14)
C5—C6—C7120.50 (14)N1—N2—C8109.36 (14)
O1—C7—N1125.22 (15)C9—N2—C8111.54 (15)
O1—C7—C6120.24 (14)
F1—C1—C2—C3178.55 (15)C4—C5—C6—C7171.20 (15)
C6—C1—C2—C31.7 (3)C1—C6—C7—O160.7 (2)
C1—C2—C3—C41.6 (3)C5—C6—C7—O1111.73 (18)
C2—C3—C4—C50.1 (3)C1—C6—C7—N1122.50 (17)
C3—C4—C5—C61.6 (3)C5—C6—C7—N165.1 (2)
F1—C1—C6—C5179.89 (14)O1—C7—N1—N20.7 (3)
C2—C1—C6—C50.1 (2)C6—C7—N1—N2175.91 (14)
F1—C1—C6—C77.5 (2)C7—N1—N2—C9136.70 (17)
C2—C1—C6—C7172.74 (15)C7—N1—N2—C8101.65 (18)
C4—C5—C6—C11.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (2)1.98 (2)2.8801 (19)168.8 (19)
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC9H11FN2O
Mr182.2
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)11.8503 (5), 7.8530 (3), 19.9630 (9)
V3)1857.77 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6796, 1797, 1491
Rint0.057
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.11
No. of reflections1797
No. of parameters124
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.25

Computer programs: COLLECT (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (2)1.98 (2)2.8801 (19)168.8 (19)
Symmetry code: (i) x+1/2, y1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds