Download citation
Download citation
link to html
The molecular structure of the title compound, C19H18Cl2O2, reveals a distorted chair conformation for the pyran ring, in which the methyl and 4-chloro­phenyl groups occupy equatorial positions. The mol­ecule is devoid of strong intramolec­ular interactions. In the crystal structure, the mol­ecules form zigzag layers which are held together by C—H...π interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803005361/ci6205sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803005361/ci6205Isup2.hkl
Contains datablock I

CCDC reference: 209949

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.051
  • wR factor = 0.140
  • Data-to-parameter ratio = 15.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The title molecule, (I), contains two pairs of chiral C atoms with identical groups on each. There can be as many as four racemic modifications and two meso forms for the molecule (Eliel, 1962). This investigation was undertaken to assign the configuration and conformation of the most stable form in the solid state.

The saturated pyran ring adopts a distorted chair conformation, as shown by the torsion angles around the bonds involving the ring atoms. These torsion angles deviate from the ideal value of 56° reported for the chair conformation of cyclohexane (Kalsi, 1997). The C—C bond lengths of the phenyl rings are in the range 1.362 (4)–1.391 (4) Å, while the bond angles are in the range 118.3 (3)–121.4 (4)°. The configurations of the chiral atoms C2, C3, C5 and C6 are found to be R, S, R and S, respectively. The equatorial dispositions of the methyl and 4-chlorophenyl groups are revealed by the torsion angles comprising the external atom and the other three ring atoms, which vary from −167.9 (2) to 178.3 (2)°, as observed in a pentasubstituted cyclohexan-1-one derivative (Sarangarajan et al., 2002).

In the crystal structure, the molecules are aggregated into zigzag layers extended over the ac plane. Within the layer, a Cl···Cl short contact of 3.406 (2) Å is observed between atoms Cl1 and Cl2i [symmetry code: (i) −1/2 − x, −y, −1/2 + z]. The adjacent layers are linked through C—H···π interactions, viz. C3—H3···Cg, with H3···Cg = 2.72 Å, C3···Cg = 3.631 (3) Å and C3—H3···Cg = 154°, where Cg denotes the centroid of the C16—C21 phenyl ring of the molecule at (-x, 1/2 + y, 1/2 − z). The molecules are also held by weak interactions (Jeffrey & Senger, 1991) between C20 and O8ii [3.373 (4) Å; symmetry code: (ii) x − 1/2, y, −z + 1/2].

The title compound is isomorphous with the analogous p-tolyl derivative, r-2,c-6-di(p-tolyl)-t-3,t-5-dimethyltetrahydropyran-4-one (Krishnamoorthy et al., 2003), with very similar crystal and molecular structures. The torsion angles around the C—C bonds of the tetrahydropyran ring are not statistically different in the two structures. This reveals no conformational changes due to the replacement of methyl by Cl atoms in the title molecule. The gas-phase conformation obtained through AM1 calculations is very similar to that observed in the solid state. The calculated heat of formation of −48.5 kcal mol−1 for the compound reveals its inherent molecular stability.

Experimental top

The title compound was prepared by the condensation of pentan-3-one and 4-chlorobenzaldehyde in a 1:2 molar ratio in methanol, as reported by Baliah & Mangalam (1978). Diffraction-quality crystals were obtained by recrystallization of the crude product from ethanol.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the molecular packing, showing the zigzag layer formation.
r-2,c-6-di(4-chlorophenyl)-t-3,t-5-dimethyltetrahydropyran-4-one top
Crystal data top
C19H18Cl2O2Dx = 1.330 Mg m3
Mr = 349.23Melting point: 463-464 K K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 15.013 (1) Åθ = 2–12°
b = 9.1230 (16) ŵ = 0.38 mm1
c = 25.462 (4) ÅT = 293 K
V = 3487.4 (9) Å3Plate, colourless
Z = 80.20 × 0.15 × 0.10 mm
F(000) = 1456
Data collection top
Enraf-Nonius CAD-4
diffractometer
2205 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.3°, θmin = 1.6°
ω–2θ scansh = 180
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.934, Tmax = 0.963l = 030
3164 measured reflections3 standard reflections every 100 reflections
3163 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0478P)2 + 2.3284P]
where P = (Fo2 + 2Fc2)/3
3163 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C19H18Cl2O2V = 3487.4 (9) Å3
Mr = 349.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.013 (1) ŵ = 0.38 mm1
b = 9.1230 (16) ÅT = 293 K
c = 25.462 (4) Å0.20 × 0.15 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2205 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.041
Tmin = 0.934, Tmax = 0.9633 standard reflections every 100 reflections
3164 measured reflections intensity decay: none
3163 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.10Δρmax = 0.22 e Å3
3163 reflectionsΔρmin = 0.34 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogen atoms were included in the calculated positions. The thermal parameters of all the H atoms were fixed as 1.2 times of the Ueq of their carrier atoms, except those of the methyl groups. The thermal parameters of the H atoms were fixed as 1.5 times of the Ueq of the respective carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23836 (7)0.02833 (16)0.01666 (4)0.0972 (4)
Cl20.08127 (7)0.15480 (12)0.46889 (3)0.0824 (3)
O10.02534 (12)0.1605 (2)0.21639 (7)0.0458 (5)
O80.24462 (15)0.3915 (3)0.18791 (9)0.0769 (7)
C20.06250 (18)0.1593 (3)0.16462 (10)0.0443 (7)
H20.10690.08080.16220.053*
C30.10719 (19)0.3064 (3)0.15152 (11)0.0503 (7)
H30.05990.38020.14940.060*
C40.16895 (19)0.3520 (4)0.19549 (11)0.0512 (7)
C50.12892 (19)0.3420 (3)0.24983 (11)0.0473 (7)
H50.07950.41200.25160.057*
C60.08960 (18)0.1865 (3)0.25631 (10)0.0437 (6)
H60.13760.11410.25330.052*
C70.1531 (2)0.3028 (5)0.09841 (12)0.0757 (11)
H7A0.18040.39610.09170.114*
H7B0.11000.28230.07150.114*
H7C0.19790.22770.09840.114*
C90.1958 (2)0.3839 (5)0.29223 (13)0.0718 (10)
H9A0.21770.48110.28570.108*
H9B0.24460.31600.29180.108*
H9C0.16730.38110.32600.108*
C100.01328 (19)0.1260 (3)0.12766 (10)0.0466 (7)
C110.0038 (2)0.0220 (4)0.08873 (11)0.0569 (8)
H110.04980.02830.08530.068*
C120.0732 (2)0.0083 (4)0.05471 (12)0.0654 (9)
H120.06650.07950.02890.079*
C130.1515 (2)0.0666 (4)0.05918 (11)0.0616 (9)
C140.1623 (2)0.1733 (4)0.09694 (12)0.0625 (9)
H140.21540.22560.09930.075*
C150.09288 (19)0.2017 (4)0.13140 (12)0.0538 (8)
H150.09990.27240.15740.065*
C160.04384 (18)0.1679 (3)0.30830 (10)0.0424 (6)
C170.08966 (19)0.1095 (4)0.35091 (11)0.0506 (7)
H170.14730.07450.34620.061*
C180.0508 (2)0.1028 (4)0.40025 (11)0.0557 (8)
H180.08220.06480.42860.067*
C190.0341 (2)0.1526 (3)0.40650 (11)0.0547 (8)
C200.0826 (2)0.2061 (4)0.36463 (12)0.0562 (8)
H200.14120.23650.36920.067*
C210.04284 (18)0.2138 (3)0.31581 (11)0.0496 (7)
H210.07500.25050.28750.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0773 (6)0.1501 (11)0.0640 (5)0.0286 (7)0.0242 (5)0.0028 (6)
Cl20.0999 (7)0.0936 (8)0.0537 (5)0.0075 (6)0.0291 (5)0.0007 (5)
O10.0458 (10)0.0551 (13)0.0366 (9)0.0067 (9)0.0020 (8)0.0008 (9)
O80.0471 (12)0.110 (2)0.0735 (15)0.0191 (13)0.0107 (12)0.0026 (15)
C20.0494 (15)0.0456 (17)0.0378 (14)0.0046 (13)0.0006 (12)0.0016 (12)
C30.0470 (16)0.0554 (19)0.0486 (16)0.0008 (14)0.0038 (13)0.0078 (14)
C40.0425 (16)0.0537 (19)0.0573 (17)0.0019 (14)0.0035 (13)0.0002 (15)
C50.0441 (15)0.0467 (17)0.0512 (15)0.0031 (13)0.0008 (12)0.0039 (14)
C60.0431 (14)0.0463 (17)0.0415 (14)0.0024 (13)0.0034 (12)0.0003 (12)
C70.069 (2)0.110 (3)0.0489 (18)0.014 (2)0.0109 (16)0.0066 (19)
C90.072 (2)0.082 (3)0.062 (2)0.026 (2)0.0054 (17)0.0058 (19)
C100.0523 (16)0.0500 (18)0.0376 (13)0.0012 (14)0.0009 (12)0.0025 (13)
C110.0662 (19)0.056 (2)0.0482 (15)0.0066 (16)0.0012 (14)0.0047 (15)
C120.082 (2)0.072 (2)0.0428 (16)0.004 (2)0.0047 (16)0.0096 (16)
C130.063 (2)0.081 (3)0.0409 (16)0.0159 (18)0.0075 (14)0.0064 (16)
C140.0485 (17)0.080 (3)0.0592 (19)0.0001 (17)0.0002 (15)0.0048 (18)
C150.0487 (16)0.060 (2)0.0522 (17)0.0036 (15)0.0000 (13)0.0061 (15)
C160.0445 (15)0.0420 (16)0.0407 (14)0.0025 (12)0.0015 (11)0.0026 (12)
C170.0483 (16)0.0571 (19)0.0463 (15)0.0041 (14)0.0033 (13)0.0001 (14)
C180.0640 (19)0.059 (2)0.0439 (16)0.0009 (16)0.0019 (14)0.0039 (14)
C190.0618 (19)0.054 (2)0.0484 (16)0.0069 (16)0.0095 (14)0.0044 (15)
C200.0461 (16)0.063 (2)0.0591 (18)0.0013 (15)0.0069 (14)0.0057 (16)
C210.0467 (15)0.0556 (19)0.0466 (15)0.0041 (14)0.0021 (13)0.0018 (14)
Geometric parameters (Å, º) top
Cl1—C131.731 (3)C9—H9C0.96
Cl2—C191.740 (3)C10—C111.380 (4)
O1—C61.421 (3)C10—C151.383 (4)
O1—C21.431 (3)C11—C121.383 (4)
O8—C41.207 (3)C11—H110.93
C2—C101.507 (4)C12—C131.364 (5)
C2—C31.537 (4)C12—H120.93
C2—H20.98C13—C141.378 (5)
C3—C41.512 (4)C14—C151.387 (4)
C3—C71.518 (4)C14—H140.93
C3—H30.98C15—H150.93
C4—C51.511 (4)C16—C211.380 (4)
C5—C91.523 (4)C16—C171.391 (4)
C5—C61.546 (4)C17—C181.387 (4)
C5—H50.98C17—H170.93
C6—C161.501 (4)C18—C191.362 (4)
C6—H60.98C18—H180.93
C7—H7A0.96C19—C201.381 (4)
C7—H7B0.96C20—C211.381 (4)
C7—H7C0.96C20—H200.93
C9—H9A0.96C21—H210.93
C9—H9B0.96
C6—O1—C2113.28 (19)H9A—C9—H9C109.5
O1—C2—C10106.4 (2)H9B—C9—H9C109.5
O1—C2—C3111.3 (2)C11—C10—C15118.8 (3)
C10—C2—C3111.7 (2)C11—C10—C2120.6 (3)
O1—C2—H2109.1C15—C10—C2120.6 (3)
C10—C2—H2109.1C10—C11—C12120.6 (3)
C3—C2—H2109.1C10—C11—H11119.7
C4—C3—C7112.8 (2)C12—C11—H11119.7
C4—C3—C2110.3 (2)C13—C12—C11119.8 (3)
C7—C3—C2111.9 (3)C13—C12—H12120.1
C4—C3—H3107.2C11—C12—H12120.1
C7—C3—H3107.2C12—C13—C14120.9 (3)
C2—C3—H3107.2C12—C13—Cl1119.7 (3)
O8—C4—C5122.6 (3)C14—C13—Cl1119.4 (3)
O8—C4—C3122.7 (3)C13—C14—C15119.0 (3)
C5—C4—C3114.7 (2)C13—C14—H14120.5
C4—C5—C9111.8 (2)C15—C14—H14120.5
C4—C5—C6107.7 (2)C10—C15—C14120.9 (3)
C9—C5—C6114.0 (3)C10—C15—H15119.6
C4—C5—H5107.7C14—C15—H15119.6
C9—C5—H5107.7C21—C16—C17118.3 (3)
C6—C5—H5107.7C21—C16—C6121.3 (2)
O1—C6—C16107.5 (2)C17—C16—C6120.3 (2)
O1—C6—C5109.6 (2)C18—C17—C16121.0 (3)
C16—C6—C5111.9 (2)C18—C17—H17119.5
O1—C6—H6109.2C16—C17—H17119.5
C16—C6—H6109.2C19—C18—C17119.0 (3)
C5—C6—H6109.2C19—C18—H18120.5
C3—C7—H7A109.5C17—C18—H18120.5
C3—C7—H7B109.5C18—C19—C20121.4 (3)
H7A—C7—H7B109.5C18—C19—Cl2119.5 (2)
C3—C7—H7C109.5C20—C19—Cl2119.1 (2)
H7A—C7—H7C109.5C21—C20—C19119.0 (3)
H7B—C7—H7C109.5C21—C20—H20120.5
C5—C9—H9A109.5C19—C20—H20120.5
C5—C9—H9B109.5C16—C21—C20121.1 (3)
H9A—C9—H9B109.5C16—C21—H21119.4
C5—C9—H9C109.5C20—C21—H21119.4
C6—O1—C2—C10178.3 (2)C15—C10—C11—C121.3 (5)
C6—O1—C2—C359.8 (3)C2—C10—C11—C12179.8 (3)
O1—C2—C3—C449.2 (3)C10—C11—C12—C130.8 (5)
C10—C2—C3—C4167.9 (2)C11—C12—C13—C140.6 (5)
O1—C2—C3—C7175.6 (2)C11—C12—C13—Cl1179.9 (3)
C10—C2—C3—C765.6 (3)C12—C13—C14—C151.5 (5)
C7—C3—C4—O85.1 (5)Cl1—C13—C14—C15179.0 (2)
C2—C3—C4—O8131.1 (3)C11—C10—C15—C140.3 (5)
C7—C3—C4—C5174.0 (3)C2—C10—C15—C14178.9 (3)
C2—C3—C4—C548.0 (3)C13—C14—C15—C101.0 (5)
O8—C4—C5—C91.3 (4)O1—C6—C16—C2137.5 (3)
C3—C4—C5—C9177.8 (3)C5—C6—C16—C2183.0 (3)
O8—C4—C5—C6127.3 (3)O1—C6—C16—C17145.4 (3)
C3—C4—C5—C651.8 (3)C5—C6—C16—C1794.1 (3)
C2—O1—C6—C16173.7 (2)C21—C16—C17—C182.5 (5)
C2—O1—C6—C564.5 (3)C6—C16—C17—C18174.6 (3)
C4—C5—C6—O157.9 (3)C16—C17—C18—C190.9 (5)
C9—C5—C6—O1177.4 (2)C17—C18—C19—C201.6 (5)
C4—C5—C6—C16177.1 (2)C17—C18—C19—Cl2176.2 (2)
C9—C5—C6—C1658.2 (3)C18—C19—C20—C212.3 (5)
O1—C2—C10—C11133.0 (3)Cl2—C19—C20—C21175.5 (2)
C3—C2—C10—C11105.3 (3)C17—C16—C21—C201.8 (4)
O1—C2—C10—C1548.5 (4)C6—C16—C21—C20175.3 (3)
C3—C2—C10—C1573.2 (3)C19—C20—C21—C160.6 (5)

Experimental details

Crystal data
Chemical formulaC19H18Cl2O2
Mr349.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)15.013 (1), 9.1230 (16), 25.462 (4)
V3)3487.4 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.934, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
3164, 3163, 2205
Rint0.041
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.140, 1.10
No. of reflections3163
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.34

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, MolEN (Fair, 1990), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 1997), SHELXL97 and PARST (Nardelli, 1983).

Selected geometric parameters (Å, º) top
O1—C61.421 (3)C3—C71.518 (4)
O1—C21.431 (3)C4—C51.511 (4)
O8—C41.207 (3)C5—C91.523 (4)
C2—C31.537 (4)C5—C61.546 (4)
C3—C41.512 (4)
C6—O1—C2113.28 (19)C5—C4—C3114.7 (2)
O1—C2—C3111.3 (2)C4—C5—C6107.7 (2)
C4—C3—C2110.3 (2)O1—C6—C5109.6 (2)
C6—O1—C2—C359.8 (3)C3—C4—C5—C651.8 (3)
O1—C2—C3—C449.2 (3)C2—O1—C6—C564.5 (3)
C2—C3—C4—C548.0 (3)C4—C5—C6—O157.9 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds