Download citation
Download citation
link to html
The title adduct N-(2-ammonioethyl)-2-hydroxy­benz­amide picrate, C9H13N2O2+·C6H2N3O7, contains an asymmetric N—H...O hydrogen bonds involving one N and three O atoms. The unit-cell packing is influenced by a network of intermolecular hydrogen bonds and π–π stacking of the aromatic rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680300655X/fl6023sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680300655X/fl6023Isup2.hkl
Contains datablock I

CCDC reference: 192748

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.052
  • wR factor = 0.142
  • Data-to-parameter ratio = 11.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_737 Alert C D...A Calc 3.035(4), Rep 3.0350(10) .... 4.00 su-Ratio N2 -O9 1.555 2.656
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Schiff bases are important ligands in coordination chemistry because they have applications in catalysis, medicine and magnetism, and they show biological activity (Vigato & Fenton, 1987; Yao et al., 2000). The amido group (HN—CO) also has special biological activity and there are analogies between the amide and the Schiff bases. By combining a Schiff base and an amide in one reaction, Yao Ke-Min and co-workers suggested that the differences N properties could lead to some mixed or polymeric Schiff bases (Wu et al., 2001). Therefore, we selected N-(2-aminoethyl)-2-hydroxybenzamide for the synthesis of this type of amine. Because we could not find the KU-2 cation-exchange resin (Isagulyants et al., 1972), and the inconvenience of chromatography (Kutz et al., 1996), we made use of the amine salt formed by the amine–acid to purify the complex.

The crystal structure of the title compound, (I), showed it to be a 1:1 adduct. A plot of this adduct is shown in Fig. 1. The two aromatic rings are approximately perpendicular to one another (dihedral angle between corresponding mean planes is ca 75.9°). There are two intramolecular hydrogen bonds in the N-(2-aminioethyl)-2-hydroxybenzamide fragment, viz. O1—H1···O2 at 2.618 (3) Å and N2—H2C···O2 at 3.045 (40) Å. A difference map showed that the H atom in the hydrogen bond between phenoxy atom O3 and amino atom N2 was localized on the N atom, indicating that the N atom is positively charged and the O atom negatively charged. The connection between the acid and salicylamide moiety is completed by four additional N—H···O hydrogen bonds. Geometric parameters for the hydrogen bonds, including two C—H···O bonds, are presented in Table 1.

In the crystal, the benzene rings of N-(2-aminioethyl)-2-hydroxybenzamide are interlaced with the benzene rings of picric acid, to form columns along the a,b axis. This is illustrated in the packing diagram seen in Fig. 2. The interplanar distances between adjacent rings are about 2.96 and 3.36 Å, respectively. Each benzene ring is linked by N—H···O interactions to two adjacent nearly perpendicular aromatic ring columns related by a translation along c to give the appearance of a zigzag chain. The chains interact through N—H···O and C—H···O interactions to complete a three-dimensional network of adducts.

Experimental top

Salicylate (1.5 g, 10 mmol) was dissolved in neat ethylenediamine (3.0 g, 50 mmol) and refluxed for 4 h. The solution was concentrated under vacuum yielding a light-brown oil. The oil was dissolved in 20 ml e thanol and added dropwise to a same solution (20 ml) of 2,4,6-trinitrophenol (2.3 g, 10 mmol). The resulting solution was refluxed for 1 h and concentrated to 20 ml. The mixture was filtered hot. The filtrate was then kept at room temperature and yellow crystals were obtained. Analysis calculated for C15H15N5O9: C 44.01, H 3.70, N 17.11; found: C 43.70, H 3.88, N 17.00%.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the adduct with the atom-numbering scheme and 30% displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the crystal packing of N-(2-aminioethyl)-2-hydroxybenzamide picrate down the a axis.
N-(2-aminoethyl)-2-hydroxybenzamide picrate top
Crystal data top
C15H15N5O9F(000) = 848
Mr = 409.32Dx = 1.518 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.761 (3) ÅCell parameters from 27 reflections
b = 8.005 (2) Åθ = 3.0–13.2°
c = 17.744 (6) ŵ = 0.13 mm1
β = 98.84 (3)°T = 295 K
V = 1790.9 (8) Å3Monoclinic, yellow
Z = 40.56 × 0.44 × 0.40 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.020
Radiation source: normal-focus sealed tubeθmax = 25.0°, θmin = 1.8°
Graphite monochromatorh = 015
ω scansk = 09
3305 measured reflectionsl = 2120
3154 independent reflections3 standard reflections every 97 reflections
1801 reflections with I > 2σ(I) intensity decay: 2.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.074P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3154 reflectionsΔρmax = 0.31 e Å3
265 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0056 (13)
Crystal data top
C15H15N5O9V = 1790.9 (8) Å3
Mr = 409.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.761 (3) ŵ = 0.13 mm1
b = 8.005 (2) ÅT = 295 K
c = 17.744 (6) Å0.56 × 0.44 × 0.40 mm
β = 98.84 (3)°
Data collection top
Siemens P4
diffractometer
Rint = 0.020
3305 measured reflections3 standard reflections every 97 reflections
3154 independent reflections intensity decay: 2.8%
1801 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 0.94Δρmax = 0.31 e Å3
3154 reflectionsΔρmin = 0.23 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8080 (2)0.0748 (3)0.51533 (13)0.0763 (7)
H10.80050.06410.56020.092*
O20.71836 (17)0.0335 (3)0.62923 (11)0.0572 (6)
N10.5678 (2)0.1805 (3)0.60658 (13)0.0510 (7)
H1N0.52280.23110.57320.061*
N20.7215 (2)0.2678 (3)0.76478 (12)0.0522 (7)
H2A0.71930.17230.79020.063*
H2B0.75170.34650.79630.063*
H2C0.75910.25340.72700.063*
C10.7334 (3)0.0136 (4)0.47126 (17)0.0529 (8)
C20.7383 (3)0.0134 (4)0.39318 (19)0.0675 (10)
H20.78950.05010.37430.081*
C30.6682 (3)0.1062 (5)0.34464 (19)0.0707 (10)
H30.67250.10710.29280.085*
C40.5914 (3)0.1980 (5)0.37166 (18)0.0689 (10)
H40.54450.26220.33820.083*
C50.5833 (3)0.1959 (4)0.44750 (16)0.0560 (8)
H50.53000.25710.46500.067*
C60.6546 (2)0.1026 (3)0.49972 (14)0.0419 (7)
C70.6480 (2)0.1033 (3)0.58249 (15)0.0416 (7)
C80.5506 (2)0.1855 (4)0.68561 (16)0.0563 (8)
H8A0.56980.07790.70890.068*
H8B0.47560.20250.68670.068*
C90.6122 (3)0.3197 (4)0.73289 (17)0.0582 (9)
H9A0.61550.41820.70150.070*
H9B0.57460.34990.77450.070*
O30.69062 (17)0.0284 (2)0.84008 (10)0.0532 (6)
O40.8397 (2)0.1505 (4)0.92114 (14)0.0921 (9)
O50.8655 (2)0.1248 (3)1.04270 (14)0.0809 (8)
O60.6136 (3)0.1328 (4)1.17567 (14)0.1018 (10)
O70.4992 (3)0.2975 (5)1.11658 (15)0.1290 (14)
O80.4262 (2)0.2668 (4)0.83869 (14)0.0969 (10)
O90.5702 (2)0.2983 (3)0.79256 (13)0.0733 (7)
N30.8138 (2)0.0951 (3)0.98020 (16)0.0571 (7)
N40.5694 (3)0.1959 (4)1.11798 (17)0.0727 (9)
N50.5229 (2)0.2530 (3)0.84301 (14)0.0557 (7)
C100.6675 (2)0.0667 (3)0.90373 (14)0.0397 (7)
C110.7197 (2)0.0069 (3)0.97670 (15)0.0415 (7)
C120.6879 (2)0.0472 (4)1.04454 (15)0.0482 (8)
H120.72420.00441.08990.058*
C130.6025 (2)0.1510 (4)1.04568 (15)0.0484 (8)
C140.5481 (2)0.2175 (4)0.97948 (16)0.0497 (8)
H140.49050.28810.98070.060*
C150.5807 (2)0.1771 (3)0.91208 (14)0.0423 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0764 (17)0.0796 (18)0.0709 (15)0.0281 (14)0.0048 (14)0.0033 (14)
O20.0648 (15)0.0568 (13)0.0450 (11)0.0143 (12)0.0073 (10)0.0069 (10)
N10.0544 (16)0.0581 (16)0.0391 (13)0.0065 (14)0.0029 (11)0.0021 (12)
N20.079 (2)0.0457 (15)0.0312 (12)0.0167 (14)0.0073 (12)0.0031 (10)
C10.054 (2)0.0481 (18)0.0539 (19)0.0038 (17)0.0016 (15)0.0049 (15)
C20.068 (2)0.075 (2)0.063 (2)0.004 (2)0.0197 (18)0.0168 (19)
C30.087 (3)0.081 (3)0.0410 (18)0.010 (2)0.0013 (19)0.0100 (18)
C40.074 (2)0.081 (2)0.0451 (19)0.006 (2)0.0094 (17)0.0027 (18)
C50.061 (2)0.060 (2)0.0424 (17)0.0008 (17)0.0066 (15)0.0011 (15)
C60.0446 (17)0.0392 (16)0.0393 (15)0.0018 (14)0.0023 (13)0.0042 (13)
C70.0497 (18)0.0322 (15)0.0397 (15)0.0032 (14)0.0033 (14)0.0001 (13)
C80.0534 (19)0.067 (2)0.0513 (18)0.0085 (17)0.0162 (15)0.0011 (16)
C90.084 (3)0.0462 (19)0.0497 (18)0.0013 (18)0.0263 (17)0.0036 (15)
O30.0784 (15)0.0446 (12)0.0402 (11)0.0090 (11)0.0204 (10)0.0006 (9)
O40.0848 (19)0.126 (2)0.0659 (16)0.0506 (17)0.0144 (14)0.0073 (16)
O50.0853 (18)0.0812 (18)0.0679 (16)0.0286 (15)0.0145 (14)0.0001 (13)
O60.153 (3)0.117 (2)0.0392 (14)0.017 (2)0.0273 (16)0.0098 (15)
O70.121 (3)0.206 (4)0.0659 (18)0.069 (3)0.0318 (17)0.024 (2)
O80.0717 (19)0.145 (3)0.0702 (16)0.0466 (18)0.0006 (14)0.0057 (16)
O90.0835 (18)0.0843 (18)0.0493 (13)0.0027 (14)0.0018 (13)0.0190 (12)
N30.0628 (18)0.0525 (16)0.0533 (16)0.0080 (14)0.0003 (14)0.0026 (14)
N40.081 (2)0.093 (2)0.0482 (18)0.002 (2)0.0222 (16)0.0105 (17)
N50.0615 (19)0.0600 (18)0.0429 (15)0.0146 (14)0.0011 (14)0.0102 (13)
C100.0519 (18)0.0316 (15)0.0366 (15)0.0059 (14)0.0099 (13)0.0037 (12)
C110.0484 (18)0.0342 (15)0.0427 (16)0.0015 (14)0.0096 (13)0.0022 (12)
C120.058 (2)0.0491 (18)0.0365 (16)0.0096 (16)0.0026 (14)0.0046 (13)
C130.0539 (19)0.060 (2)0.0341 (15)0.0080 (17)0.0137 (14)0.0057 (14)
C140.0488 (18)0.0530 (19)0.0476 (17)0.0024 (15)0.0088 (14)0.0101 (14)
C150.0477 (17)0.0410 (16)0.0365 (15)0.0003 (14)0.0015 (12)0.0052 (13)
Geometric parameters (Å, º) top
O1—C11.337 (4)C8—H8A0.9700
O1—H10.8200C8—H8B0.9700
O2—C71.256 (3)C9—H9A0.9700
N1—C71.321 (4)C9—H9B0.9700
N1—C81.453 (3)O3—C101.249 (3)
N1—H1N0.8600O4—N31.229 (3)
N2—C91.482 (4)O5—N31.223 (3)
N2—H2A0.8900O6—N41.201 (4)
N2—H2B0.8900O7—N41.207 (4)
N2—H2C0.8900O8—N51.229 (3)
C1—C61.390 (4)O9—N51.209 (3)
C1—C21.397 (4)N3—C111.446 (4)
C2—C31.363 (5)N4—C131.456 (4)
C2—H20.9300N5—C151.462 (4)
C3—C41.370 (5)C10—C151.442 (4)
C3—H30.9300C10—C111.444 (4)
C4—C51.365 (4)C11—C121.366 (4)
C4—H40.9300C12—C131.374 (4)
C5—C61.409 (4)C12—H120.9300
C5—H50.9300C13—C141.376 (4)
C6—C71.484 (4)C14—C151.364 (4)
C8—C91.508 (4)C14—H140.9300
C1—O1—H1109.5C9—C8—H8B108.7
C7—N1—C8124.4 (3)H8A—C8—H8B107.6
C7—N1—H1N117.8N2—C9—C8113.1 (3)
C8—N1—H1N117.8N2—C9—H9A109.0
C9—N2—H2A109.5C8—C9—H9A109.0
C9—N2—H2B109.5N2—C9—H9B109.0
H2A—N2—H2B109.5C8—C9—H9B109.0
C9—N2—H2C109.5H9A—C9—H9B107.8
H2A—N2—H2C109.5O5—N3—O4121.7 (3)
H2B—N2—H2C109.5O5—N3—C11118.5 (3)
O1—C1—C6123.3 (3)O4—N3—C11119.8 (3)
O1—C1—C2116.3 (3)O6—N4—O7123.4 (3)
C6—C1—C2120.4 (3)O6—N4—C13119.0 (3)
C3—C2—C1120.1 (3)O7—N4—C13117.6 (3)
C3—C2—H2120.0O9—N5—O8122.5 (3)
C1—C2—H2120.0O9—N5—C15120.0 (3)
C2—C3—C4120.5 (3)O8—N5—C15117.5 (3)
C2—C3—H3119.8O3—C10—C15122.4 (2)
C4—C3—H3119.8O3—C10—C11126.1 (3)
C5—C4—C3120.3 (3)C15—C10—C11111.5 (2)
C5—C4—H4119.9C12—C11—C10123.6 (3)
C3—C4—H4119.9C12—C11—N3116.9 (3)
C4—C5—C6121.1 (3)C10—C11—N3119.4 (2)
C4—C5—H5119.4C11—C12—C13120.0 (3)
C6—C5—H5119.4C11—C12—H12120.0
C1—C6—C5117.6 (3)C13—C12—H12120.0
C1—C6—C7121.1 (3)C12—C13—C14121.2 (3)
C5—C6—C7121.3 (3)C12—C13—N4120.0 (3)
O2—C7—N1120.3 (3)C14—C13—N4118.7 (3)
O2—C7—C6120.6 (3)C15—C14—C13118.4 (3)
N1—C7—C6119.1 (3)C15—C14—H14120.8
N1—C8—C9114.4 (2)C13—C14—H14120.8
N1—C8—H8A108.7C14—C15—C10125.3 (3)
C9—C8—H8A108.7C14—C15—N5117.0 (3)
N1—C8—H8B108.7C10—C15—N5117.7 (2)
O1—C1—C2—C3177.1 (3)O4—N3—C11—C12172.1 (3)
C6—C1—C2—C32.6 (5)O5—N3—C11—C10169.8 (3)
C1—C2—C3—C41.0 (6)O4—N3—C11—C1010.7 (4)
C2—C3—C4—C50.9 (6)C10—C11—C12—C130.5 (4)
C3—C4—C5—C61.3 (5)N3—C11—C12—C13176.5 (3)
O1—C1—C6—C5177.5 (3)C11—C12—C13—C140.6 (4)
C2—C1—C6—C52.2 (4)C11—C12—C13—N4179.2 (3)
O1—C1—C6—C70.5 (5)O6—N4—C13—C124.6 (5)
C2—C1—C6—C7179.7 (3)O7—N4—C13—C12174.3 (3)
C4—C5—C6—C10.3 (5)O6—N4—C13—C14176.8 (3)
C4—C5—C6—C7178.4 (3)O7—N4—C13—C144.2 (5)
C8—N1—C7—O23.0 (4)C12—C13—C14—C150.3 (4)
C8—N1—C7—C6177.9 (3)N4—C13—C14—C15178.9 (3)
C1—C6—C7—O25.3 (4)C13—C14—C15—C101.2 (5)
C5—C6—C7—O2172.7 (3)C13—C14—C15—N5178.6 (3)
C1—C6—C7—N1175.6 (3)O3—C10—C15—C14176.6 (3)
C5—C6—C7—N16.4 (4)C11—C10—C15—C142.1 (4)
C7—N1—C8—C983.6 (4)O3—C10—C15—N53.6 (4)
N1—C8—C9—N284.9 (3)C11—C10—C15—N5177.6 (2)
O3—C10—C11—C12176.9 (3)O9—N5—C15—C14141.6 (3)
C15—C10—C11—C121.8 (4)O8—N5—C15—C1438.9 (4)
O3—C10—C11—N36.1 (4)O9—N5—C15—C1038.1 (4)
C15—C10—C11—N3175.2 (2)O8—N5—C15—C10141.3 (3)
O5—N3—C11—C127.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.902.618 (3)146
N2—H2B···O2i0.891.992.865 (3)165
N2—H2A···O30.891.902.779 (3)171
N1—H1N···O5ii0.862.313.078 (8)150
N2—H2A···O40.892.593.093 (2)117
N2—H2C···O20.892.473.045 (4)123
N2—H2C···O3i0.892.262.832 (4)122
N2—H2C···O9i0.892.303.035 (1)141
C2—H2···O8iii0.932.443.360 (6)174
C4—H4···O9iv0.932.563.397 (2)150
C5—H5···O4ii0.932.543.308 (6)140
C9—H9B···O7v0.972.313.217 (7)154
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z1/2; (iv) x+1, y, z+1; (v) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC15H15N5O9
Mr409.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)12.761 (3), 8.005 (2), 17.744 (6)
β (°) 98.84 (3)
V3)1790.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.56 × 0.44 × 0.40
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3305, 3154, 1801
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.142, 0.94
No. of reflections3154
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.902.618 (3)146
N2—H2B···O2i0.891.992.865 (3)165
N2—H2A···O30.891.902.779 (3)171
N1—H1N···O5ii0.862.313.078 (8)150
N2—H2A···O40.892.593.093 (2)117
N2—H2C···O20.892.473.045 (4)123
N2—H2C···O3i0.892.262.832 (4)122
N2—H2C···O9i0.892.303.035 (1)141
C2—H2···O8iii0.932.443.360 (6)174
C9—H9B···O7iv0.972.313.217 (7)154
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z1/2; (iv) x+1, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds