Download citation
Download citation
link to html
The title compound, [Sn(CH3)2(C5H10NS2)2], previously reported by Morris & Schlemper [J. Cryst. Mol. Struct. (1979), 9, 13–31], has been rerefined against new intensity data. Geometric parameters agree quite well. However, the positions of the hydroxyl H atoms could be determined employing the new data. Furthermore, the results of the present structure determination are of significantly higher precision. There are one and a half mol­ecules in the asymmetric unit. The Sn atom of one mol­ecule is located on a twofold rotation axis, whereas all other atoms are located in general positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803006056/na6215sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803006056/na6215Isup2.hkl
Contains datablock I

CCDC reference: 209896

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.026
  • wR factor = 0.052
  • Data-to-parameter ratio = 22.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_360 Alert C Short C(sp3)-C(sp3) Bond C(15) - C(16) = 1.36 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Perspective views of the title compound, (I), are shown in Figs. 1 and 2. The original structure was reported by Morris & Schlemper (1979), who also reported a triclinic polymorph. Lockhart et al. (1986), on the other hand, had determined the structure of an orthorhombic polymorph. The geometric parameters of both determinations agree quite well. A least-squares fit between all non-H atoms gives an r.m.s. deviation of 0.044 Å. However, the present work is of significantly improved precision and we were able to determine the positions of the H atoms. There are one and a half molecules in the asymmetric unit. The Sn atom of one molecule is located on a twofold rotation axis, whereas all other atoms are located on general positions.

Experimental top

In an effort to synthesize a macrocyclic tin complex, we added diethyltin dichloride, 2,4-pentanedione, ethylenediamine and sodium diethyl dithiocarbamate trihydrate to DMSO as solvent medium. From the product mixture we isolated suitable single crystals. However, we got an entirely different structure from what we expected.

Refinement top

All H atoms could be located unequivocally by difference Fourier synthesis and were refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl)], using a riding model, with C—H = 0.99 Å or methyl C—H = 0.98 Å. One curious feature of the structure is the very short C15—C16 bond, which at 1.356 (7) Å is much shorter than a usual CH2—CH3 bond. We attribute this to a slight disorder of these atoms. By the way, the structure of Morris & Schlemper (1979) shows the same feature.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

Figures top
[Figure 1] Fig. 1. Perspective view of molecule 1 of the title compound, showing the atom numbering and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of molecule 2 of the title compound, showing the atom numbering and displacement ellipsoids at the 50% probability level.
bis(N,N-diethyldithiocarbamato-κS)dimethyltin(IV) top
Crystal data top
[Sn(CH3)2(C5H10NS2)2]F(000) = 2712
Mr = 445.28Dx = 1.477 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 22309 reflections
a = 27.735 (2) Åθ = 3.5–25.2°
b = 12.3703 (7) ŵ = 1.68 mm1
c = 17.8281 (12) ÅT = 293 K
β = 100.829 (6)°Block, colourless
V = 6007.7 (7) Å30.22 × 0.21 × 0.12 mm
Z = 12
Data collection top
Stoe IPDS-II two-circle
diffractometer
5755 independent reflections
Radiation source: fine-focus sealed tube3910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 25.8°, θmin = 3.6°
Absorption correction: multi-scan
(MULABS; Spek, 1990; Blessing, 1995)
h = 3333
Tmin = 0.708, Tmax = 0.824k = 1515
41948 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
5755 reflections(Δ/σ)max = 0.004
258 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Sn(CH3)2(C5H10NS2)2]V = 6007.7 (7) Å3
Mr = 445.28Z = 12
Monoclinic, C2/cMo Kα radiation
a = 27.735 (2) ŵ = 1.68 mm1
b = 12.3703 (7) ÅT = 293 K
c = 17.8281 (12) Å0.22 × 0.21 × 0.12 mm
β = 100.829 (6)°
Data collection top
Stoe IPDS-II two-circle
diffractometer
5755 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 1990; Blessing, 1995)
3910 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.824Rint = 0.048
41948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 0.97Δρmax = 0.64 e Å3
5755 reflectionsΔρmin = 0.45 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.662828 (8)0.541443 (16)0.400477 (12)0.05720 (7)
S10.60531 (3)0.38492 (6)0.40544 (6)0.0693 (2)
S20.55785 (3)0.59621 (7)0.36857 (6)0.0776 (3)
S30.72693 (3)0.39578 (6)0.43772 (5)0.0643 (2)
S40.76803 (3)0.60904 (7)0.40873 (6)0.0754 (2)
N10.50936 (10)0.4111 (2)0.36286 (16)0.0728 (7)
N20.82015 (9)0.4268 (2)0.43167 (14)0.0650 (7)
C10.66556 (15)0.6383 (3)0.4988 (2)0.0979 (13)
H1A0.66630.59260.54260.147*
H1B0.63700.68380.49240.147*
H1C0.69460.68230.50620.147*
C20.66033 (13)0.5668 (3)0.28242 (19)0.0824 (10)
H2A0.65930.49830.25690.124*
H2B0.68900.60590.27530.124*
H2C0.63150.60770.26150.124*
C30.55218 (10)0.4619 (3)0.37769 (17)0.0591 (7)
C40.77714 (10)0.4759 (2)0.42664 (16)0.0555 (7)
C50.50504 (14)0.2916 (3)0.3642 (3)0.0938 (12)
H5A0.47710.26980.32590.113*
H5B0.53420.26010.35050.113*
C60.4991 (3)0.2488 (4)0.4376 (4)0.161 (2)
H6A0.49650.17150.43460.242*
H6B0.46980.27820.45110.242*
H6C0.52700.26850.47570.242*
C70.46299 (12)0.4720 (3)0.3396 (2)0.0856 (11)
H7A0.43900.42560.30840.103*
H7B0.46890.53310.30850.103*
C80.44229 (16)0.5118 (5)0.4052 (3)0.137 (2)
H8A0.41230.55010.38670.205*
H8B0.46540.55950.43550.205*
H8C0.43580.45170.43580.205*
C90.82803 (12)0.3117 (3)0.4511 (2)0.0747 (9)
H9A0.80460.28940.48230.090*
H9B0.86070.30270.48130.090*
C100.82263 (17)0.2400 (3)0.3824 (3)0.1067 (14)
H10A0.82830.16630.39840.160*
H10B0.84610.26080.35170.160*
H10C0.79000.24690.35290.160*
C110.86381 (12)0.4851 (3)0.4171 (2)0.0862 (11)
H11A0.85350.54570.38340.103*
H11B0.88320.43710.39160.103*
C120.89494 (16)0.5260 (5)0.4898 (3)0.1310 (18)
H12A0.92290.56370.47820.197*
H12B0.90590.46600.52290.197*
H12C0.87590.57430.51480.197*
Sn20.50000.08929 (3)0.75000.07005 (11)
S50.43799 (3)0.06228 (7)0.72285 (6)0.0796 (3)
S60.39645 (4)0.15789 (8)0.70688 (8)0.1019 (4)
N30.34354 (11)0.0217 (3)0.6761 (2)0.1022 (11)
C130.49290 (15)0.1449 (4)0.8595 (2)0.1075 (14)
H13A0.49090.08420.89230.161*
H13B0.46370.18780.85540.161*
H13C0.52090.18810.88060.161*
C140.38717 (12)0.0231 (3)0.6996 (2)0.0767 (9)
C150.29574 (19)0.0526 (5)0.6403 (3)0.1252 (16)
H15A0.30570.12090.62110.150*
H15B0.27420.01500.59940.150*
C160.2738 (3)0.0677 (6)0.7013 (4)0.199 (3)
H16A0.24490.11120.68650.298*
H16B0.29620.10360.74120.298*
H16C0.26480.00110.71950.298*
C170.33664 (15)0.1394 (3)0.6673 (3)0.1012 (14)
H17A0.30750.15280.62900.121*
H17B0.36440.16940.64840.121*
C180.3317 (2)0.1970 (4)0.7377 (3)0.139 (2)
H18A0.32720.27280.72700.208*
H18B0.30380.16950.75630.208*
H18C0.36080.18630.77560.208*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.05827 (12)0.04909 (12)0.06721 (13)0.00293 (10)0.01937 (9)0.00405 (11)
S10.0511 (4)0.0508 (5)0.1068 (7)0.0005 (3)0.0168 (4)0.0055 (4)
S20.0693 (5)0.0584 (5)0.1088 (7)0.0109 (4)0.0261 (5)0.0077 (5)
S30.0535 (4)0.0523 (5)0.0887 (6)0.0057 (3)0.0177 (4)0.0055 (4)
S40.0707 (5)0.0556 (5)0.1026 (7)0.0126 (4)0.0233 (5)0.0037 (5)
N10.0582 (16)0.0772 (19)0.085 (2)0.0004 (14)0.0182 (14)0.0012 (15)
N20.0527 (15)0.0768 (18)0.0679 (17)0.0022 (12)0.0178 (12)0.0115 (14)
C10.092 (3)0.100 (3)0.107 (3)0.014 (2)0.030 (2)0.048 (2)
C20.079 (2)0.099 (3)0.073 (2)0.0057 (19)0.0216 (17)0.011 (2)
C30.0523 (16)0.0603 (18)0.0673 (19)0.0004 (15)0.0182 (14)0.0011 (16)
C40.0551 (17)0.0582 (19)0.0550 (18)0.0071 (14)0.0152 (13)0.0012 (14)
C50.073 (2)0.087 (3)0.125 (4)0.012 (2)0.028 (2)0.016 (3)
C60.197 (6)0.115 (4)0.196 (6)0.010 (4)0.102 (5)0.038 (4)
C70.0535 (19)0.110 (3)0.091 (3)0.0104 (19)0.0076 (17)0.005 (2)
C80.087 (3)0.215 (6)0.117 (4)0.056 (3)0.042 (3)0.016 (4)
C90.066 (2)0.079 (2)0.082 (3)0.0135 (17)0.0203 (17)0.023 (2)
C100.128 (4)0.087 (3)0.116 (4)0.024 (2)0.051 (3)0.004 (3)
C110.0566 (19)0.107 (3)0.101 (3)0.0086 (19)0.0282 (19)0.017 (2)
C120.085 (3)0.159 (5)0.142 (4)0.041 (3)0.004 (3)0.005 (4)
Sn20.0666 (2)0.05157 (18)0.1002 (3)0.0000.03682 (18)0.000
S50.0719 (6)0.0531 (5)0.1127 (7)0.0004 (4)0.0149 (5)0.0077 (5)
S60.0725 (6)0.0626 (6)0.1785 (12)0.0098 (4)0.0442 (7)0.0050 (6)
N30.0624 (18)0.086 (2)0.163 (3)0.0019 (16)0.0335 (19)0.030 (2)
C130.091 (3)0.114 (3)0.129 (4)0.035 (2)0.052 (3)0.045 (3)
C140.066 (2)0.070 (2)0.100 (3)0.0009 (17)0.0327 (18)0.0111 (19)
C150.124 (4)0.155 (5)0.101 (3)0.013 (3)0.035 (3)0.014 (3)
C160.239 (8)0.221 (8)0.166 (6)0.043 (6)0.114 (6)0.039 (6)
C170.083 (3)0.100 (3)0.129 (4)0.027 (2)0.040 (2)0.052 (3)
C180.177 (5)0.104 (4)0.158 (5)0.061 (3)0.089 (4)0.059 (3)
Geometric parameters (Å, º) top
Sn1—C12.113 (3)C9—H9B0.9700
Sn1—C22.116 (3)C10—H10A0.9600
Sn1—S12.5207 (8)C10—H10B0.9600
Sn1—S32.5308 (8)C10—H10C0.9600
S1—C31.746 (3)C11—C121.504 (5)
S2—C31.680 (3)C11—H11A0.9700
S3—C41.750 (3)C11—H11B0.9700
S4—C41.688 (3)C12—H12A0.9600
N1—C31.326 (4)C12—H12B0.9600
N1—C51.483 (4)C12—H12C0.9600
N1—C71.481 (4)Sn2—C13i2.114 (4)
N2—C41.326 (4)Sn2—C132.114 (4)
N2—C91.472 (4)Sn2—S5i2.5287 (9)
N2—C111.474 (4)Sn2—S52.5287 (9)
C1—H1A0.9600S5—C141.748 (3)
C1—H1B0.9600S6—C141.688 (4)
C1—H1C0.9600N3—C141.325 (4)
C2—H2A0.9600N3—C171.473 (5)
C2—H2B0.9600N3—C151.641 (6)
C2—H2C0.9600C13—H13A0.9600
C5—C61.449 (6)C13—H13B0.9600
C5—H5A0.9700C13—H13C0.9600
C5—H5B0.9700C15—C161.356 (7)
C6—H6A0.9600C15—H15A0.9700
C6—H6B0.9600C15—H15B0.9700
C6—H6C0.9600C16—H16A0.9600
C7—C81.480 (5)C16—H16B0.9600
C7—H7A0.9700C16—H16C0.9600
C7—H7B0.9700C17—C181.471 (6)
C8—H8A0.9600C17—H17A0.9700
C8—H8B0.9600C17—H17B0.9700
C8—H8C0.9600C18—H18A0.9600
C9—C101.498 (5)C18—H18B0.9600
C9—H9A0.9700C18—H18C0.9600
C1—Sn1—C2136.95 (17)C9—C10—H10A109.5
C1—Sn1—S1109.30 (12)C9—C10—H10B109.5
C2—Sn1—S1104.24 (11)H10A—C10—H10B109.5
C1—Sn1—S3105.78 (13)C9—C10—H10C109.5
C2—Sn1—S3104.86 (10)H10A—C10—H10C109.5
S1—Sn1—S382.06 (3)H10B—C10—H10C109.5
C3—S1—Sn194.44 (10)N2—C11—C12111.7 (3)
C4—S3—Sn195.85 (10)N2—C11—H11A109.3
C3—N1—C5122.7 (3)C12—C11—H11A109.3
C3—N1—C7120.9 (3)N2—C11—H11B109.3
C5—N1—C7116.3 (3)C12—C11—H11B109.3
C4—N2—C9123.4 (2)H11A—C11—H11B107.9
C4—N2—C11121.5 (3)C11—C12—H12A109.5
C9—N2—C11115.1 (3)C11—C12—H12B109.5
Sn1—C1—H1A109.5H12A—C12—H12B109.5
Sn1—C1—H1B109.5C11—C12—H12C109.5
H1A—C1—H1B109.5H12A—C12—H12C109.5
Sn1—C1—H1C109.5H12B—C12—H12C109.5
H1A—C1—H1C109.5C13i—Sn2—C13142.0 (3)
H1B—C1—H1C109.5C13i—Sn2—S5i103.90 (11)
Sn1—C2—H2A109.5C13—Sn2—S5i104.04 (14)
Sn1—C2—H2B109.5C13i—Sn2—S5104.04 (14)
H2A—C2—H2B109.5C13—Sn2—S5103.90 (11)
Sn1—C2—H2C109.5S5i—Sn2—S584.29 (4)
H2A—C2—H2C109.5C14—S5—Sn294.96 (12)
H2B—C2—H2C109.5C14—N3—C17122.7 (3)
N1—C3—S2123.1 (2)C14—N3—C15120.7 (3)
N1—C3—S1118.4 (2)C17—N3—C15115.7 (3)
S2—C3—S1118.51 (17)Sn2—C13—H13A109.5
N2—C4—S4124.1 (2)Sn2—C13—H13B109.5
N2—C4—S3117.3 (2)H13A—C13—H13B109.5
S4—C4—S3118.67 (17)Sn2—C13—H13C109.5
C6—C5—N1113.7 (4)H13A—C13—H13C109.5
C6—C5—H5A108.8H13B—C13—H13C109.5
N1—C5—H5A108.8N3—C14—S6123.7 (3)
C6—C5—H5B108.8N3—C14—S5118.0 (3)
N1—C5—H5B108.8S6—C14—S5118.3 (2)
H5A—C5—H5B107.7C16—C15—N3102.5 (5)
C5—C6—H6A109.5C16—C15—H15A111.3
C5—C6—H6B109.5N3—C15—H15A111.3
H6A—C6—H6B109.5C16—C15—H15B111.3
C5—C6—H6C109.5N3—C15—H15B111.3
H6A—C6—H6C109.5H15A—C15—H15B109.2
H6B—C6—H6C109.5C15—C16—H16A109.5
N1—C7—C8113.2 (3)C15—C16—H16B109.5
N1—C7—H7A108.9H16A—C16—H16B109.5
C8—C7—H7A108.9C15—C16—H16C109.5
N1—C7—H7B108.9H16A—C16—H16C109.5
C8—C7—H7B108.9H16B—C16—H16C109.5
H7A—C7—H7B107.7C18—C17—N3114.8 (4)
C7—C8—H8A109.5C18—C17—H17A108.6
C7—C8—H8B109.5N3—C17—H17A108.6
H8A—C8—H8B109.5C18—C17—H17B108.6
C7—C8—H8C109.5N3—C17—H17B108.6
H8A—C8—H8C109.5H17A—C17—H17B107.6
H8B—C8—H8C109.5C17—C18—H18A109.5
N2—C9—C10113.1 (3)C17—C18—H18B109.5
N2—C9—H9A109.0H18A—C18—H18B109.5
C10—C9—H9A109.0C17—C18—H18C109.5
N2—C9—H9B109.0H18A—C18—H18C109.5
C10—C9—H9B109.0H18B—C18—H18C109.5
H9A—C9—H9B107.8
C1—Sn1—S1—C377.56 (17)C3—N1—C7—C886.2 (5)
C2—Sn1—S1—C375.03 (14)C5—N1—C7—C897.0 (4)
S3—Sn1—S1—C3178.43 (10)C4—N2—C9—C1093.7 (4)
C1—Sn1—S3—C480.37 (15)C11—N2—C9—C1085.8 (4)
C2—Sn1—S3—C469.02 (15)C4—N2—C11—C1295.4 (4)
S1—Sn1—S3—C4171.73 (10)C9—N2—C11—C1285.2 (4)
C5—N1—C3—S2174.3 (3)C13i—Sn2—S5—C1476.46 (16)
C7—N1—C3—S22.3 (4)C13—Sn2—S5—C1477.52 (19)
C5—N1—C3—S13.9 (4)S5i—Sn2—S5—C14179.40 (13)
C7—N1—C3—S1179.5 (2)C17—N3—C14—S6177.5 (3)
Sn1—S1—C3—N1172.3 (2)C15—N3—C14—S68.9 (5)
Sn1—S1—C3—S25.91 (18)C17—N3—C14—S51.5 (5)
C9—N2—C4—S4176.8 (2)C15—N3—C14—S5170.1 (3)
C11—N2—C4—S43.8 (4)Sn2—S5—C14—N3176.5 (3)
C9—N2—C4—S34.4 (4)Sn2—S5—C14—S62.6 (2)
C11—N2—C4—S3175.0 (2)C14—N3—C15—C1696.8 (6)
Sn1—S3—C4—N2171.8 (2)C17—N3—C15—C1693.8 (5)
Sn1—S3—C4—S47.04 (18)C14—N3—C17—C1885.0 (5)
C3—N1—C5—C691.9 (5)C15—N3—C17—C18105.8 (5)
C7—N1—C5—C691.4 (5)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C5H10NS2)2]
Mr445.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)27.735 (2), 12.3703 (7), 17.8281 (12)
β (°) 100.829 (6)
V3)6007.7 (7)
Z12
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.22 × 0.21 × 0.12
Data collection
DiffractometerStoe IPDS-II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 1990; Blessing, 1995)
Tmin, Tmax0.708, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
41948, 5755, 3910
Rint0.048
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.052, 0.97
No. of reflections5755
No. of parameters258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.45

Computer programs: X-AREA (Stoe & Cie, 2001), X-AREA, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL-Plus (Sheldrick, 1991).

Selected bond lengths (Å) top
Sn1—C12.113 (3)S3—C41.750 (3)
Sn1—C22.116 (3)S4—C41.688 (3)
Sn1—S12.5207 (8)Sn2—C132.114 (4)
Sn1—S32.5308 (8)S5—C141.748 (3)
S1—C31.746 (3)S6—C141.688 (4)
S2—C31.680 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds