Download citation
Download citation
link to html
The title compound, C30H32N2O6, is a soluble precursor (`latent pigment') of diketopyrrolo­pyrrole pigments. The mol­ecule has inversion symmetry. The aryl ring and tert-butoxy­carbonyl group are twisted with respect to the heterocyclic ring by 64.5 (1) and 30.7 (1)°, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803005312/ob6221sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803005312/ob6221Isup2.hkl
Contains datablock I

CCDC reference: 209952

Key indicators

  • Single-crystal X-ray study
  • T = 93 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.048
  • wR factor = 0.107
  • Data-to-parameter ratio = 13.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 68.25 From the CIF: _reflns_number_total 2243 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2407 Completeness (_total/calc) 93.19% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The title compound, (I), is a soluble yellow precursor (`latent pigment') (Zambounis et al., 1994, 1997) of diketopyrrolopyrrole pigments (DPP) (Herbst & Hunger, 1997) that are known as industrially important red pigments. The soluble precursor is prepared by replacing the H atom of the NH group with a tert-butoxycarbonyl (t-BOC) group, hereafter called t-BOC DPP. The insoluble parent DPP can then be regenerated by thermochemical treatment of the precursor. The present `latent pigment technology' is a versatile and promising technique for the preparation of nano pigment particles, as well as transparent pigmented thin films, etc. We have previously reported the crystal structures of the α- and β-forms of unsubstituted DPP (Mizuguchi, 2003a,b). The present paper deals with the crystal structure of o-methylphenyl derivative, (I).

The title compound crystallizes in space group P21/c and the molecule belongs to the molecular symmetry of Ci (Fig. 1). The phenyl rings are symmetrically deviated from the heterocyclic system by 64.5 (1)° [N1/C1/C2/C3/C3i and C4–C9; symmetry code: (i) 1 − x, 1 − y, 1 − z]. The t-BOC groups attached to the N atom of the heterocyclic ring are also symmetrically twisted to the heterocyclic system by 30.7 (1)° (N1/C1/C2/C3/C3i and N1/C11/O2/O3). The heterocyclic ring system is entirely planar. The molecules are stacked along the a axis.

Experimental top

The title compound, (I), was prepared according to the method described in the literature (Zambounis et al., 1994). Single crystals of (I) were grown from an acetonitrile solution.

Refinement top

All H atoms were positioned by calculation but not refined.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing ellipsoids at the 50% probability level for non-H atoms.
(I) top
Crystal data top
C30H32N2O6F(000) = 548
Mr = 516.59Dx = 1.305 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 7.148 (1) ÅCell parameters from 5184 reflections
b = 14.148 (3) Åθ = 4.6–68.2°
c = 13.065 (2) ŵ = 0.75 mm1
β = 95.729 (8)°T = 93 K
V = 1314.7 (4) Å3Block, colorless
Z = 20.30 × 0.10 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
1226 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.051
48 frames, delta ω = 15 deg scansθmax = 68.3°
Absorption correction: multi-scan
(Higashi, 1995)
h = 77
Tmin = 0.841, Tmax = 0.928k = 1617
12159 measured reflectionsl = 1515
2243 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max = 0.005
S = 0.87Δρmax = 0.57 e Å3
2241 reflectionsΔρmin = 0.33 e Å3
172 parameters
Crystal data top
C30H32N2O6V = 1314.7 (4) Å3
Mr = 516.59Z = 2
Monoclinic, P21/nCu Kα radiation
a = 7.148 (1) ŵ = 0.75 mm1
b = 14.148 (3) ÅT = 93 K
c = 13.065 (2) Å0.30 × 0.10 × 0.10 mm
β = 95.729 (8)°
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
2243 independent reflections
Absorption correction: multi-scan
(Higashi, 1995)
1226 reflections with F2 > 2σ(F2)
Tmin = 0.841, Tmax = 0.928Rint = 0.051
12159 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048172 parameters
wR(F2) = 0.107H-atom parameters constrained
S = 0.87Δρmax = 0.57 e Å3
2241 reflectionsΔρmin = 0.33 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5113 (2)0.6072 (1)0.3071 (1)0.0368 (6)
O20.2681 (2)0.4883 (1)0.1822 (1)0.0410 (6)
O30.0431 (2)0.4415 (1)0.2832 (1)0.0311 (5)
N10.3296 (3)0.4789 (1)0.3582 (1)0.0285 (6)
C10.4748 (3)0.5508 (2)0.3722 (2)0.0320 (8)
C20.3152 (3)0.4277 (2)0.4515 (2)0.0282 (8)
C30.4485 (3)0.4633 (2)0.5214 (2)0.0286 (8)
C40.1805 (4)0.3506 (2)0.4632 (2)0.0337 (8)
C50.1886 (4)0.2654 (2)0.4109 (2)0.0361 (9)
C60.0587 (4)0.1932 (2)0.4297 (2)0.0381 (9)
C70.0718 (4)0.2090 (2)0.4976 (2)0.0415 (9)
C80.0807 (4)0.2940 (2)0.5504 (2)0.0444 (10)
C90.0461 (4)0.3640 (2)0.5350 (2)0.0424 (9)
C100.3378 (4)0.2478 (2)0.3438 (2)0.0443 (9)
C110.2117 (4)0.4703 (2)0.2638 (2)0.0335 (8)
C120.1026 (4)0.4160 (2)0.1978 (2)0.0321 (8)
C130.1674 (4)0.5058 (2)0.1412 (2)0.0419 (9)
C140.0268 (4)0.3432 (2)0.1283 (2)0.0414 (9)
C150.2543 (4)0.3740 (2)0.2560 (2)0.0416 (9)
H10.06110.13380.39590.0472*
H20.15980.16110.50840.0505*
H30.17290.30250.59650.0539*
H40.04300.42110.57300.0513*
H50.06350.53520.11470.0529*
H60.26090.49120.08730.0529*
H70.21860.54820.18840.0529*
H80.01000.28820.16700.0512*
H90.12010.32740.07460.0512*
H100.08030.36870.09980.0512*
H110.29760.42010.30120.0514*
H120.35740.35470.20830.0514*
H130.20690.32100.29430.0514*
H140.32370.18600.31210.0525*
H150.33330.29330.28840.0525*
H160.45940.25080.38050.0525*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.036 (1)0.040 (1)0.034 (1)0.0100 (9)0.0006 (9)0.0040 (9)
O20.034 (1)0.057 (1)0.033 (1)0.0120 (10)0.0044 (9)0.000 (1)
O30.021 (1)0.038 (1)0.034 (1)0.0042 (8)0.0000 (8)0.0002 (8)
N10.021 (1)0.037 (1)0.026 (1)0.006 (1)0.0001 (9)0.001 (1)
C10.025 (2)0.035 (2)0.037 (2)0.004 (1)0.003 (1)0.002 (1)
C20.021 (2)0.035 (2)0.029 (1)0.001 (1)0.005 (1)0.000 (1)
C30.020 (2)0.036 (2)0.029 (2)0.003 (1)0.001 (1)0.000 (1)
C40.028 (2)0.036 (2)0.035 (2)0.003 (1)0.009 (1)0.000 (1)
C50.024 (2)0.046 (2)0.037 (2)0.004 (1)0.006 (1)0.000 (1)
C60.029 (2)0.044 (2)0.040 (2)0.007 (1)0.005 (1)0.001 (1)
C70.043 (2)0.038 (2)0.043 (2)0.003 (1)0.005 (1)0.001 (1)
C80.040 (2)0.051 (2)0.044 (2)0.007 (2)0.008 (1)0.003 (2)
C90.029 (2)0.049 (2)0.048 (2)0.010 (1)0.003 (1)0.004 (2)
C100.036 (2)0.047 (2)0.049 (2)0.004 (2)0.002 (1)0.001 (2)
C110.026 (2)0.034 (2)0.040 (2)0.004 (1)0.002 (1)0.003 (1)
C120.021 (2)0.039 (2)0.034 (2)0.001 (1)0.005 (1)0.000 (1)
C130.034 (2)0.046 (2)0.043 (2)0.000 (1)0.008 (1)0.005 (1)
C140.034 (2)0.047 (2)0.042 (2)0.006 (1)0.004 (1)0.008 (1)
C150.025 (2)0.052 (2)0.047 (2)0.003 (1)0.004 (1)0.000 (1)
Geometric parameters (Å, º) top
O1—C11.214 (3)C8—C91.370 (4)
O2—C111.205 (3)C8—H30.944
O3—C111.320 (3)C9—H40.950
O3—C121.492 (3)C10—H140.968
N1—C11.452 (3)C10—H150.967
N1—C21.430 (3)C10—H160.951
N1—C111.428 (3)C12—C131.518 (4)
C1—C3i1.456 (4)C12—C141.510 (4)
C2—C31.350 (3)C12—C151.507 (4)
C2—C41.473 (4)C13—H50.947
C3—C3i1.420 (5)C13—H60.944
C4—C51.390 (4)C13—H70.959
C4—C91.421 (4)C14—H80.951
C5—C61.419 (4)C14—H90.946
C5—C101.468 (4)C14—H100.954
C6—C71.368 (4)C15—H110.952
C6—H10.951C15—H120.956
C7—C81.391 (4)C15—H130.946
C7—H20.945
O1···C6ii3.315 (3)O2···C6ii3.526 (3)
O1···C14ii3.443 (4)C1···C15iii3.592 (4)
C11—O3—C12120.9 (2)C5—C10—H15111.2
C1—N1—C2111.0 (2)C5—C10—H16111.9
C1—N1—C11121.4 (2)H14—C10—H15106.6
C2—N1—C11127.3 (2)H14—C10—H16107.9
O1—C1—N1125.0 (2)H15—C10—H16108.0
O1—C1—C3i132.3 (2)O2—C11—O3128.9 (2)
N1—C1—C3i102.7 (2)O2—C11—N1121.7 (2)
N1—C2—C3106.4 (2)O3—C11—N1109.4 (2)
N1—C2—C4124.5 (2)O3—C12—C13108.6 (2)
C3—C2—C4129.1 (2)O3—C12—C14110.4 (2)
C1i—C3—C2140.2 (2)O3—C12—C15101.7 (2)
C1i—C3—C3i108.4 (3)C13—C12—C14112.8 (2)
C2—C3—C3i111.4 (3)C13—C12—C15112.0 (2)
C2—C4—C5122.1 (2)C14—C12—C15110.7 (2)
C2—C4—C9117.5 (2)C12—C13—H5109.5
C5—C4—C9120.3 (3)C12—C13—H6109.9
C4—C5—C6118.7 (3)C12—C13—H7109.1
C4—C5—C10120.6 (3)H5—C13—H6110.2
C6—C5—C10120.5 (3)H5—C13—H7108.9
C5—C6—C7119.6 (3)H6—C13—H7109.2
C5—C6—H1121.0C12—C14—H8109.6
C7—C6—H1119.4C12—C14—H9109.8
C6—C7—C8122.1 (3)C12—C14—H10109.1
C6—C7—H2119.1H8—C14—H9109.8
C8—C7—H2118.8H8—C14—H10109.1
C7—C8—C9119.2 (3)H9—C14—H10109.5
C7—C8—H3119.7C12—C15—H11109.7
C9—C8—H3121.1C12—C15—H12109.3
C4—C9—C8120.1 (3)C12—C15—H13109.9
C4—C9—H4120.7H11—C15—H12108.8
C8—C9—H4119.2H11—C15—H13109.7
C5—C10—H14111.0H12—C15—H13109.3
O1—C1—N1—C2176.6 (2)C2—C3—C3i—C2i180.0000 (2)
O1—C1—N1—C111.5 (4)C2—C4—C5—C6177.3 (2)
O1—C1—C3i—C2i1.4 (6)C2—C4—C5—C102.1 (4)
O1—C1—C3i—C3176.6 (3)C2—C4—C9—C8178.9 (2)
O2—C11—O3—C127.2 (4)C3—C1i—N1i—C11i177.4 (2)
O2—C11—N1—C132.9 (4)C3—C2—N1—C11176.3 (2)
O2—C11—N1—C2152.9 (3)C3—C2—C4—C5113.3 (3)
O3—C11—N1—C1146.8 (2)C3—C2—C4—C963.3 (4)
O3—C11—N1—C227.4 (3)C3—C3i—C2i—C4i179.0 (3)
N1—C1—C3i—C2i179.8 (3)C4—C2—N1—C114.8 (4)
N1—C1—C3i—C32.2 (3)C4—C5—C6—C70.6 (4)
N1—C2—C3—C1i177.9 (3)C4—C9—C8—C72.1 (4)
N1—C2—C3—C3i0.2 (3)C5—C4—C9—C82.3 (4)
N1—C2—C4—C565.3 (4)C5—C6—C7—C80.8 (4)
N1—C2—C4—C9118.1 (3)C6—C5—C4—C90.9 (4)
N1—C11—O3—C12173.0 (2)C6—C7—C8—C90.6 (4)
C1—N1—C2—C31.6 (3)C7—C6—C5—C10175.8 (2)
C1—N1—C2—C4179.5 (2)C9—C4—C5—C10174.3 (2)
C1—C3i—C2i—C4i0.9 (5)C11—O3—C12—C1370.2 (3)
C1—C3i—C3—C1i180.0C11—O3—C12—C1453.9 (3)
C1—C3i—C3—C21.3 (4)C11—O3—C12—C15171.5 (2)
C2—N1—C1—C3i2.3 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC30H32N2O6
Mr516.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)7.148 (1), 14.148 (3), 13.065 (2)
β (°) 95.729 (8)
V3)1314.7 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.75
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID Imaging Plate
diffractometer
Absorption correctionMulti-scan
(Higashi, 1995)
Tmin, Tmax0.841, 0.928
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
12159, 2243, 1226
Rint0.051
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.107, 0.87
No. of reflections2241
No. of parameters172
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.33

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, TEXSAN (Molecular Structure Corporation, 2001), SHELXS97 (Sheldrick, 1997), TEXSAN, ORTEPIII (Burnett & Johnson, 1996).

Selected geometric parameters (Å, º) top
O1—C11.214 (3)N1—C111.428 (3)
O2—C111.205 (3)C1—C3i1.456 (4)
O3—C111.320 (3)C2—C31.350 (3)
O3—C121.492 (3)C2—C41.473 (4)
N1—C11.452 (3)C3—C3i1.420 (5)
N1—C21.430 (3)
O2—C11—N1—C132.9 (4)N1—C2—C4—C565.3 (4)
O2—C11—N1—C2152.9 (3)N1—C2—C4—C9118.1 (3)
O3—C11—N1—C1146.8 (2)C3—C2—C4—C5113.3 (3)
O3—C11—N1—C227.4 (3)C3—C2—C4—C963.3 (4)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds