Download citation
Download citation
link to html
The title compound, C14H14N4O6S, has a basal plane which contains a urea group, a pyrimidine ring and the S atom. The overall conformation is V-shaped. There exists a pseudo-six-membered ring involving the pyrimidine ring and the urea moiety as a result of an intramolecular N—H...N hydrogen bond. The mol­ecules form dimers via an intermolecular N—H...N hydrogen bond and π–π interactions stabilize the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680300446X/su6015sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680300446X/su6015Isup2.hkl
Contains datablock I

CCDC reference: 209926

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.056
  • wR factor = 0.119
  • Data-to-parameter ratio = 14.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Sulfonylureas are a successful class of herbicides used worldwide (Levitt, 1991). As part of a study devoted to understand the reaction mechanism of sulfonylureas, we have determined the crystal structures of a number of such compounds (Li et al., 1992, 1993, 1994, 1997; Jiang et al., 2000). We have also recently reported the structure of 1-(4-methoxypyrimidin-2-yl)-3-(2-nitrophenylsulfonyl)urea (Ma et al., 2003).

The title compound, (I), has a basal plane involving the pyrimidine ring, the urea group and the S atom, with a mean deviation of 0.02 Å. The phenyl ring is twisted out of the basal plane, with a dihedral angle of 82.6 (4)°. The orientation of the phenyl ring is defined by the torsion angles N1—S1—C7—C8 of −80.1 (2)° and C7—S1—N1—C1 of −64.0 (3)° (Table 1), hence the overall conformation of (I) is V-shaped. This is similar to the so-called conformer ε of the sulfonylureas, thromboxane synthase inhibitor (TXSI) and thromboxane receptor antagonist (TXRA), propossed by Michaux et al. (2001, 2002). The plane containing atoms C13, O5, O6 and C14 is inclined at 65.1 (5)° to the phenyl-ring plane, and at 17.7 (3)° to the basal plane. The presence of the intramolecular hydrogen bond N1—H1A···N3 means that atoms N3, C2, N2, C1, N1 and H1A form a pseudo-six-membered ring (Table 2), which results in the coplanarity of the pyrimidine ring and the urea moiety.

In the crystal, the molecules form dimers via N2—H2a···N4i intermolecular hydrogen bonds [Table 2, symmetry code: (i) 1 − x, 1 − y, −z]. Each dimer has ππ interactions between phenyl rings with a second dimer [distance 3.764 (3) Å], and ππ interactions between pyrimidine rings with a third dimer [distance 3.747 (4) Å], see Fig. 2. The crystal structure is stabilized by all of these intermolecular hydrogen bonds and the ππ-stacking interactions.

Experimental top

The title compound was synthesized by condensation of 2-methoxycarbonylbenzenesulfonyl isocyanate and 2-amino-4-methoxypyrimidine (Li et al., 1993). Single crystals suitable for crystallographic analysis were obtained by slow evaporation of a 1:1 methanol/acetone solution at room temperature over a period of 15 d.

Refinement top

All H atoms were placed at calculated positions and treated as riding atoms (C—H = 0.93–0.96 Å and N—H = 0.86 Å), with Uiso equal to 1.2 times of Ueq of the parent N or C atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing all non-H atoms, with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing diagram, showing the intermolecular hydrogen bonds (dashed lines) and ππ-stacking interactions.
(I) top
Crystal data top
C14H14N4O6SZ = 2
Mr = 366.35F(000) = 380
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.129 (2) ÅCell parameters from 960 reflections
b = 7.529 (2) Åθ = 2.8–21.6°
c = 16.371 (5) ŵ = 0.23 mm1
α = 94.350 (5)°T = 293 K
β = 101.426 (5)°Prism, colourless
γ = 100.753 (5)°0.36 × 0.32 × 0.20 mm
V = 840.3 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3413 independent reflections
Radiation source: fine-focus sealed tube1931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 26.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 86
Tmin = 0.918, Tmax = 0.955k = 99
4849 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.2733P]
where P = (Fo2 + 2Fc2)/3
3413 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H14N4O6Sγ = 100.753 (5)°
Mr = 366.35V = 840.3 (4) Å3
Triclinic, P1Z = 2
a = 7.129 (2) ÅMo Kα radiation
b = 7.529 (2) ŵ = 0.23 mm1
c = 16.371 (5) ÅT = 293 K
α = 94.350 (5)°0.36 × 0.32 × 0.20 mm
β = 101.426 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3413 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1931 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.955Rint = 0.034
4849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
3413 reflectionsΔρmin = 0.22 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22580 (13)0.54385 (11)0.31053 (5)0.0454 (3)
N10.2280 (4)0.4999 (3)0.21079 (15)0.0435 (7)
H10.12420.43630.17770.052*
N20.3720 (4)0.4994 (3)0.09462 (15)0.0458 (7)
H20.47370.53890.07520.055*
N30.0552 (4)0.3155 (3)0.05916 (15)0.0417 (6)
N40.2604 (4)0.3600 (4)0.03992 (16)0.0465 (7)
O10.0363 (3)0.4544 (3)0.31769 (13)0.0564 (6)
O20.2894 (4)0.7347 (3)0.33491 (14)0.0665 (7)
O30.5367 (3)0.6614 (3)0.21730 (14)0.0683 (7)
O40.2533 (3)0.1355 (3)0.01748 (15)0.0618 (7)
O50.1109 (4)0.0924 (3)0.25425 (15)0.0653 (7)
O60.0779 (3)0.0551 (3)0.38590 (14)0.0588 (7)
C10.3894 (5)0.5606 (4)0.1778 (2)0.0472 (8)
C20.2210 (4)0.3859 (4)0.03626 (19)0.0386 (7)
C30.0838 (5)0.2107 (4)0.0001 (2)0.0459 (8)
C40.0599 (5)0.1743 (4)0.0818 (2)0.0548 (9)
H40.15830.10080.12300.066*
C50.1151 (5)0.2523 (5)0.0978 (2)0.0547 (9)
H50.13540.22990.15170.066*
C60.2818 (5)0.1725 (5)0.1016 (2)0.0703 (11)
H6A0.18280.13380.14080.105*
H6B0.40850.10750.10550.105*
H6C0.27310.30070.11430.105*
C70.4021 (4)0.4333 (4)0.36434 (17)0.0367 (7)
C80.3617 (4)0.2466 (4)0.37072 (17)0.0373 (7)
C90.5049 (5)0.1713 (4)0.41629 (19)0.0514 (9)
H90.47990.04740.42140.062*
C100.6854 (5)0.2781 (5)0.4545 (2)0.0589 (10)
H100.78120.22520.48450.071*
C110.7240 (5)0.4608 (5)0.4484 (2)0.0590 (10)
H110.84540.53210.47450.071*
C120.5824 (5)0.5394 (5)0.40337 (19)0.0502 (9)
H120.60830.66380.39930.060*
C130.1691 (5)0.1247 (4)0.3287 (2)0.0453 (8)
C140.1069 (5)0.0704 (5)0.3537 (3)0.0858 (13)
H14A0.19000.01470.31450.129*
H14B0.16880.10080.39920.129*
H14C0.08450.17910.32590.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0531 (6)0.0419 (5)0.0439 (5)0.0115 (4)0.0157 (4)0.0042 (4)
N10.0395 (15)0.0499 (16)0.0370 (15)0.0004 (12)0.0068 (12)0.0048 (12)
N20.0375 (15)0.0580 (18)0.0386 (16)0.0009 (13)0.0107 (12)0.0044 (13)
N30.0376 (15)0.0460 (16)0.0415 (15)0.0067 (13)0.0089 (13)0.0090 (13)
N40.0473 (17)0.0513 (17)0.0400 (16)0.0080 (13)0.0099 (13)0.0048 (13)
O10.0436 (14)0.0711 (16)0.0621 (15)0.0155 (12)0.0238 (12)0.0122 (12)
O20.096 (2)0.0394 (14)0.0643 (16)0.0166 (13)0.0186 (14)0.0002 (11)
O30.0566 (16)0.0836 (19)0.0486 (15)0.0205 (14)0.0095 (13)0.0019 (13)
O40.0419 (14)0.0736 (17)0.0617 (16)0.0044 (12)0.0062 (12)0.0116 (13)
O50.0669 (17)0.0620 (16)0.0510 (15)0.0045 (13)0.0043 (13)0.0048 (12)
O60.0554 (15)0.0471 (14)0.0688 (16)0.0086 (11)0.0203 (13)0.0037 (12)
C10.047 (2)0.048 (2)0.046 (2)0.0018 (17)0.0119 (17)0.0124 (16)
C20.0376 (19)0.0378 (18)0.0427 (19)0.0111 (15)0.0092 (15)0.0090 (14)
C30.041 (2)0.0404 (19)0.056 (2)0.0085 (16)0.0066 (17)0.0133 (16)
C40.054 (2)0.052 (2)0.048 (2)0.0040 (18)0.0036 (18)0.0009 (17)
C50.061 (2)0.057 (2)0.044 (2)0.0128 (19)0.0068 (19)0.0018 (17)
C60.049 (2)0.084 (3)0.080 (3)0.007 (2)0.023 (2)0.019 (2)
C70.0402 (18)0.0388 (18)0.0305 (16)0.0016 (14)0.0128 (14)0.0021 (13)
C80.0378 (18)0.0396 (19)0.0339 (16)0.0060 (14)0.0099 (14)0.0002 (14)
C90.059 (2)0.044 (2)0.049 (2)0.0112 (18)0.0067 (18)0.0024 (16)
C100.049 (2)0.073 (3)0.053 (2)0.020 (2)0.0018 (18)0.0016 (19)
C110.036 (2)0.071 (3)0.060 (2)0.0038 (18)0.0059 (18)0.0041 (19)
C120.047 (2)0.050 (2)0.050 (2)0.0037 (17)0.0160 (17)0.0018 (16)
C130.047 (2)0.0336 (18)0.051 (2)0.0033 (15)0.0053 (18)0.0004 (16)
C140.061 (3)0.060 (3)0.124 (4)0.021 (2)0.030 (3)0.007 (2)
Geometric parameters (Å, º) top
S1—O21.424 (2)C4—C51.360 (4)
S1—O11.424 (2)C4—H40.9300
S1—N11.645 (2)C5—H50.9300
S1—C71.764 (3)C6—H6A0.9600
N1—C11.382 (4)C6—H6B0.9600
N1—H10.8600C6—H6C0.9600
N2—C11.378 (4)C7—C121.383 (4)
N2—C21.388 (4)C7—C81.398 (4)
N2—H20.8600C8—C91.378 (4)
N3—C31.325 (4)C8—C131.503 (4)
N3—C21.338 (4)C9—C101.383 (4)
N4—C21.340 (4)C9—H90.9300
N4—C51.346 (4)C10—C111.367 (5)
O3—C11.207 (4)C10—H100.9300
O4—C31.330 (4)C11—C121.380 (5)
O4—C61.445 (4)C11—H110.9300
O5—C131.197 (4)C12—H120.9300
O6—C131.329 (4)C14—H14A0.9600
O6—C141.446 (4)C14—H14B0.9600
C3—C41.395 (4)C14—H14C0.9600
O2—S1—O1119.87 (14)O4—C6—H6B109.5
O2—S1—N1109.02 (13)H6A—C6—H6B109.5
O1—S1—N1104.57 (13)O4—C6—H6C109.5
O2—S1—C7108.33 (15)H6A—C6—H6C109.5
O1—S1—C7109.24 (13)H6B—C6—H6C109.5
N1—S1—C7104.77 (13)C12—C7—C8120.3 (3)
C1—N1—S1122.9 (2)C12—C7—S1117.6 (2)
C1—N1—H1118.6C8—C7—S1122.1 (2)
S1—N1—H1118.6C9—C8—C7118.6 (3)
C1—N2—C2132.0 (3)C9—C8—C13118.9 (3)
C1—N2—H2114.0C7—C8—C13122.4 (3)
C2—N2—H2114.0C8—C9—C10120.7 (3)
C3—N3—C2116.2 (3)C8—C9—H9119.6
C2—N4—C5114.9 (3)C10—C9—H9119.6
C3—O4—C6118.6 (3)C11—C10—C9120.4 (3)
C13—O6—C14115.8 (3)C11—C10—H10119.8
O3—C1—N2120.8 (3)C9—C10—H10119.8
O3—C1—N1123.8 (3)C10—C11—C12119.9 (3)
N2—C1—N1115.4 (3)C10—C11—H11120.1
N3—C2—N4126.6 (3)C12—C11—H11120.1
N3—C2—N2119.5 (3)C11—C12—C7120.0 (3)
N4—C2—N2113.9 (3)C11—C12—H12120.0
N3—C3—O4120.0 (3)C7—C12—H12120.0
N3—C3—C4122.3 (3)O5—C13—O6125.6 (3)
O4—C3—C4117.6 (3)O5—C13—C8124.3 (3)
C5—C4—C3116.3 (3)O6—C13—C8110.1 (3)
C5—C4—H4121.8O6—C14—H14A109.5
C3—C4—H4121.8O6—C14—H14B109.5
N4—C5—C4123.5 (3)H14A—C14—H14B109.5
N4—C5—H5118.2O6—C14—H14C109.5
C4—C5—H5118.2H14A—C14—H14C109.5
O4—C6—H6A109.5H14B—C14—H14C109.5
O2—S1—N1—C151.8 (3)O1—S1—C7—C12146.2 (2)
O1—S1—N1—C1178.9 (2)N1—S1—C7—C12102.2 (2)
C7—S1—N1—C164.0 (3)O2—S1—C7—C8163.6 (2)
C2—N2—C1—O3179.6 (3)O1—S1—C7—C831.4 (3)
C2—N2—C1—N10.2 (5)N1—S1—C7—C880.1 (2)
S1—N1—C1—O35.6 (5)C12—C7—C8—C90.2 (4)
S1—N1—C1—N2175.0 (2)S1—C7—C8—C9177.8 (2)
C3—N3—C2—N40.6 (4)C12—C7—C8—C13179.2 (3)
C3—N3—C2—N2179.0 (3)S1—C7—C8—C133.2 (4)
C5—N4—C2—N30.4 (4)C7—C8—C9—C100.4 (4)
C5—N4—C2—N2179.2 (3)C13—C8—C9—C10178.7 (3)
C1—N2—C2—N30.2 (5)C8—C9—C10—C110.7 (5)
C1—N2—C2—N4179.4 (3)C9—C10—C11—C120.4 (5)
C2—N3—C3—O4179.9 (3)C10—C11—C12—C70.2 (5)
C2—N3—C3—C40.3 (4)C8—C7—C12—C110.5 (4)
C6—O4—C3—N30.7 (4)S1—C7—C12—C11178.2 (2)
C6—O4—C3—C4179.5 (3)C14—O6—C13—O50.2 (5)
N3—C3—C4—C50.1 (5)C14—O6—C13—C8177.8 (3)
O4—C3—C4—C5179.7 (3)C9—C8—C13—O5113.4 (4)
C2—N4—C5—C40.1 (5)C7—C8—C13—O565.6 (4)
C3—C4—C5—N40.3 (5)C9—C8—C13—O664.7 (3)
O2—S1—C7—C1214.0 (3)C7—C8—C13—O6116.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N30.862.012.690 (6)136
N2—H2···N4i0.862.112.971 (7)174
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H14N4O6S
Mr366.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.129 (2), 7.529 (2), 16.371 (5)
α, β, γ (°)94.350 (5), 101.426 (5), 100.753 (5)
V3)840.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.36 × 0.32 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.918, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
4849, 3413, 1931
Rint0.034
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.119, 1.01
No. of reflections3413
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
S1—O21.424 (2)N3—C21.338 (4)
S1—N11.645 (2)O3—C11.207 (4)
S1—C71.764 (3)O4—C31.330 (4)
N1—C11.382 (4)O4—C61.445 (4)
N2—C11.378 (4)O5—C131.197 (4)
N2—C21.388 (4)O6—C131.329 (4)
N3—C31.325 (4)C3—C41.395 (4)
O2—S1—O1119.87 (14)C1—N2—C2132.0 (3)
O2—S1—N1109.02 (13)C3—O4—C6118.6 (3)
O2—S1—C7108.33 (15)O3—C1—N2120.8 (3)
N1—S1—C7104.77 (13)N2—C1—N1115.4 (3)
C1—N1—S1122.9 (2)O5—C13—C8124.3 (3)
C7—S1—N1—C164.0 (3)C6—O4—C3—N30.7 (4)
S1—N1—C1—N2175.0 (2)N1—S1—C7—C880.1 (2)
C1—N2—C2—N4179.4 (3)C7—C8—C13—O565.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N30.862.012.690 (6)136
N2—H2···N4i0.862.112.971 (7)174
Symmetry code: (i) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds