Download citation
Download citation
link to html
The title compound, C9H7N3OS2, is essentially planar and features an intramolecular O—H...N interaction. Centrosymmetrically related mol­ecules associate via N—H...S contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803006627/tk6096sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803006627/tk6096Isup2.hkl
Contains datablock I

CCDC reference: 209994

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.034
  • wR factor = 0.085
  • Data-to-parameter ratio = 13.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The biological versatility of compounds incorporating a thiadiazole ring is well known (Kumar et al., 1988; Yadav et al., 1989). In this connection, it was thought of interest to combine a Schiff base with a thiadiazole ring system. Thus, the synthesis and structure of a new compound, namely 5-[(2-hydroxyphenyl)methyleneamino]-1,3,4-thiadiazole-2(3H)-thione, (I), is reported.

The molecular structure of (I) (Fig. 1 and Table 1) has two approximately parallel fragments linked by an Schiff base, with the dihedral angle between the aromatic and thiadiazole rings being 1.0 (1)°. The C9—S2 bond length of 1.662 (3) Å is approximately 0.08 Å shorter than the C9—S1 bond length, confirming the presence of the thione. There is an O1—H···N1 intramolecular hydrogen-bonding interaction, so that the O···N separation is 2.614 (3) Å, with an O—H···N angle of 146°. Centrosymmetrically related molecules associate via N—H···Si contacts [H···S2i = 2.44° and N3···S2i = 3.291 (2) Å; symmetry code: (i) −1 − x, 1 − y, 1 − z]. There is also a C7—H···O1ii interaction with a C···Oii separation of 3.391 (3) Å [symmetry code: (ii) x, 1/2 − y, 1/2 + z].

Further work investigating the biological profile of (I) is in progress.

Experimental top

(I) was prepared using a procedure similar to a reported method (Wang et al., 1999). Yellow single crystals were obtained by recrystallization from a hot ethanol solution of the compound. IR (KBr): 3390 (s), 3260 (s), 1615 (s) cm−1. 1H NMR (DMSO-d6): δ 14.58 (1H, m), 8.89 (1H, m), 11.15 (1H, s), 7.02–7.98 (4H, s). Calculated for C9H7N3OS2: C 45.23, H2.68, N 17.50%; found: C 45.53, H 2.97, N 17.74%.

Refinement top

The H atoms were included in the riding-model approximation.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of (I), showing displacement ellipsoids at the 30% probability level.
5-[(2-Hydroxyphenyl)methleneamino]-1,3,4-thiadiazole-2(3H)-thione top
Crystal data top
C9H7N3OS2F(000) = 488
Mr = 237.30Dx = 1.502 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.587 (3) ÅCell parameters from 662 reflections
b = 13.723 (5) Åθ = 3.1–26.0°
c = 11.758 (5) ŵ = 0.48 mm1
β = 99.183 (6)°T = 293 K
V = 1049.2 (7) Å3Block, yellow
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1822 independent reflections
Radiation source: fine-focus sealed tube1440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Sheldrick, 1996)
h = 47
Tmin = 0.841, Tmax = 0.890k = 1416
2862 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.2779P]
where P = (Fo2 + 2Fc2)/3
1822 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C9H7N3OS2V = 1049.2 (7) Å3
Mr = 237.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.587 (3) ŵ = 0.48 mm1
b = 13.723 (5) ÅT = 293 K
c = 11.758 (5) Å0.30 × 0.25 × 0.20 mm
β = 99.183 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1822 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Sheldrick, 1996)
1440 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.890Rint = 0.017
2862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.06Δρmax = 0.22 e Å3
1822 reflectionsΔρmin = 0.18 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02404 (9)0.41301 (5)0.69266 (5)0.0463 (2)
S20.37268 (10)0.52545 (5)0.68937 (5)0.0553 (2)
N20.1020 (3)0.36578 (15)0.48081 (15)0.0490 (5)
N10.2126 (3)0.29468 (14)0.54584 (15)0.0451 (5)
N30.2447 (3)0.42387 (14)0.51818 (15)0.0467 (5)
H3A0.35480.43950.47210.056*
C60.5334 (3)0.21686 (16)0.61021 (17)0.0389 (5)
C50.6984 (4)0.20360 (16)0.70044 (19)0.0445 (6)
H50.69460.23340.77110.053*
C70.3638 (3)0.27793 (16)0.62733 (18)0.0413 (5)
H70.36320.30610.69920.050*
C80.0505 (4)0.35235 (16)0.56372 (17)0.0418 (6)
C90.2142 (3)0.45686 (16)0.62677 (18)0.0422 (5)
C10.5415 (4)0.16994 (19)0.50441 (19)0.0512 (6)
C40.8644 (4)0.14782 (18)0.6865 (2)0.0528 (6)
H40.97290.14020.74690.063*
O10.3886 (3)0.17983 (17)0.41334 (14)0.0781 (6)
H10.29500.21210.43260.117*
C30.8696 (5)0.10311 (19)0.5824 (2)0.0627 (8)
H30.98350.06580.57270.075*
C20.7088 (5)0.1126 (2)0.4918 (2)0.0665 (8)
H20.71340.08040.42260.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0449 (4)0.0553 (4)0.0351 (3)0.0079 (3)0.0048 (2)0.0032 (3)
S20.0478 (4)0.0715 (5)0.0436 (3)0.0128 (3)0.0018 (3)0.0044 (3)
N20.0479 (12)0.0623 (13)0.0345 (10)0.0063 (10)0.0005 (9)0.0006 (9)
N10.0472 (12)0.0529 (12)0.0340 (10)0.0069 (10)0.0025 (9)0.0004 (8)
N30.0418 (11)0.0608 (12)0.0342 (10)0.0058 (10)0.0040 (8)0.0020 (9)
C60.0442 (13)0.0413 (12)0.0315 (11)0.0006 (10)0.0066 (10)0.0035 (9)
C50.0513 (14)0.0470 (13)0.0339 (11)0.0025 (12)0.0032 (10)0.0028 (10)
C70.0473 (14)0.0471 (13)0.0296 (11)0.0016 (11)0.0063 (10)0.0011 (9)
C80.0460 (14)0.0476 (13)0.0304 (11)0.0014 (11)0.0017 (10)0.0029 (10)
C90.0411 (13)0.0455 (13)0.0377 (12)0.0039 (11)0.0011 (10)0.0044 (10)
C10.0621 (17)0.0565 (15)0.0335 (12)0.0081 (13)0.0030 (11)0.0002 (11)
C40.0528 (15)0.0550 (15)0.0479 (14)0.0107 (13)0.0001 (11)0.0057 (12)
O10.0837 (15)0.1076 (16)0.0364 (9)0.0337 (13)0.0111 (9)0.0168 (10)
C30.0703 (19)0.0609 (17)0.0582 (16)0.0254 (15)0.0145 (14)0.0017 (13)
C20.086 (2)0.0679 (18)0.0450 (14)0.0236 (16)0.0093 (14)0.0100 (13)
Geometric parameters (Å, º) top
S1—C91.743 (2)C5—C41.366 (3)
S1—C81.762 (2)C5—H50.9300
S2—C91.662 (3)C7—H70.9300
N2—C81.296 (3)C1—O11.354 (3)
N2—N31.358 (3)C1—C21.382 (4)
N1—C71.288 (3)C4—C31.375 (3)
N1—C81.372 (3)C4—H40.9300
N3—C91.339 (3)O1—H10.8200
N3—H3A0.8600C3—C21.383 (4)
C6—C51.404 (3)C3—H30.9300
C6—C11.409 (3)C2—H20.9300
C6—C71.436 (3)
C9—S1—C889.22 (11)N1—C8—S1126.19 (16)
C8—N2—N3109.48 (19)N3—C9—S2127.19 (17)
C7—N1—C8121.16 (19)N3—C9—S1107.13 (17)
C9—N3—N2120.04 (18)S2—C9—S1125.68 (13)
C9—N3—H3A120.0O1—C1—C2118.5 (2)
N2—N3—H3A120.0O1—C1—C6121.6 (2)
C5—C6—C1118.3 (2)C2—C1—C6119.9 (2)
C5—C6—C7119.69 (19)C5—C4—C3119.4 (2)
C1—C6—C7122.0 (2)C5—C4—H4120.3
C4—C5—C6121.3 (2)C3—C4—H4120.3
C4—C5—H5119.3C1—O1—H1109.5
C6—C5—H5119.3C4—C3—C2121.3 (3)
N1—C7—C6121.8 (2)C4—C3—H3119.4
N1—C7—H7119.1C2—C3—H3119.4
C6—C7—H7119.1C1—C2—C3119.8 (2)
N2—C8—N1119.7 (2)C1—C2—H2120.1
N2—C8—S1114.12 (18)C3—C2—H2120.1
C8—N2—N3—C90.4 (3)N2—N3—C9—S11.2 (3)
C1—C6—C5—C40.8 (3)C8—S1—C9—N31.20 (17)
C7—C6—C5—C4178.5 (2)C8—S1—C9—S2178.05 (17)
C8—N1—C7—C6179.3 (2)C5—C6—C1—O1179.6 (2)
C5—C6—C7—N1177.7 (2)C7—C6—C1—O10.3 (4)
C1—C6—C7—N11.6 (3)C5—C6—C1—C20.1 (4)
N3—N2—C8—N1179.24 (19)C7—C6—C1—C2179.4 (2)
N3—N2—C8—S10.6 (3)C6—C5—C4—C30.5 (4)
C7—N1—C8—N2178.2 (2)C5—C4—C3—C20.8 (4)
C7—N1—C8—S11.6 (3)O1—C1—C2—C3178.4 (3)
C9—S1—C8—N21.12 (19)C6—C1—C2—C31.3 (4)
C9—S1—C8—N1178.8 (2)C4—C3—C2—C11.7 (5)
N2—N3—C9—S2178.03 (17)

Experimental details

Crystal data
Chemical formulaC9H7N3OS2
Mr237.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.587 (3), 13.723 (5), 11.758 (5)
β (°) 99.183 (6)
V3)1049.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995; Sheldrick, 1996)
Tmin, Tmax0.841, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
2862, 1822, 1440
Rint0.017
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.06
No. of reflections1822
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
S1—C91.743 (2)N1—C71.288 (3)
S1—C81.762 (2)N1—C81.372 (3)
S2—C91.662 (3)N3—C91.339 (3)
N2—C81.296 (3)C1—O11.354 (3)
N2—N31.358 (3)
C7—N1—C8121.16 (19)N1—C7—C6121.8 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds