Download citation
Download citation
link to html
The title compound, Ph2P(O)CH2N(CH2Ph)C5H4N or C25H23N2OP, was obtained by reaction of Ph2PCH2N(CH2Ph)C5H4N and H2O2. The crystal structure shows distorted tetrahedral geometry around the P atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803008304/ac6034sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803008304/ac6034Isup2.hkl
Contains datablock I

CCDC reference: 214625

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.047
  • wR factor = 0.120
  • Data-to-parameter ratio = 14.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Pyridylphosphines continue to induce much interest as excellent ligands for stabilizing many transition-metal coordination and organometallic complexes (Espinet & Soulantica, 1999). One important property of these ligands is that they can stabilize metal ions in a variety of valence states and geometries. Hence, a metal–metal bond between an electron-rich metal (soft base) and a high oxidation-state metal (Lewis acid) is easily formed (Zhang & Cheng, 1996). Recently, we designed and synthesized a hetero-binuclear complex containing an Fe—Cu bond by a new pyridylphosphine ligand, viz. Ph2PCH2N(c—C6H11)C5H4N (Cui et al., 2001).

Pyridylphosphine oxides have recently been shown to behave either as N(pyridyl)-donor or N(pyridyl),O-chelating ligands upon complexation palladium(II) and platinum(II) centres (Minghetti et al., 1998; Smith et al., 2000). In order to study the interesting coordination ability in this kind of ligand we synthesized a new pyridylphosphine oxide Ph2P(O)CH2N(CH2Ph)C5H4N and its molecular structure was determined by the X-ray diffraction study. The X-ray structure of the title compound, (I), shows distorted tetrahedral geometry around P atom. The P—O distance [1.4815 (18) Å] is shorter than those in other triarylphosphine oxides (Smith et al., 2000; Minghetti et al., 1998; Szlyk et al., 1989; Bandoli et al., 1970).

Experimental top

The synthesis of (I) was carried out under an argon atmosphere. To a solution of Ph2PCH2N(CH2Ph)C5H4N (0.100 g, 0.252 mmol) in tetrahydrofuran (2 ml) was added aqueous H2O2 solution (30% w/w, 0.2 ml). The resulting solution was stirred for about 48 h, filtered to remove some insoluble material and diethyl ether (15 ml) added. The white solid was collected by filtration and dried in vacuo.

Refinement top

All H atoms were located geometrically and refined in calculated positions.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of (I) along with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing arrangement in a cell of crystal (I).
{[N-Benzyl-N-(2-pyridyl)amino]methylene}diphenylphosphine oxide top
Crystal data top
C25H23N2OPF(000) = 840
Mr = 398.42Dx = 1.250 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.256 (3) ÅCell parameters from 573 reflections
b = 14.834 (5) Åθ = 1.9–25.0°
c = 15.957 (5) ŵ = 0.15 mm1
β = 104.979 (6)°T = 293 K
V = 2116.5 (12) Å3Plate, white
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3727 independent reflections
Radiation source: fine-focus sealed tube2051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 117
Tmin = 0.971, Tmax = 0.985k = 1715
8613 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
3727 reflections(Δ/σ)max = 0.009
262 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C25H23N2OPV = 2116.5 (12) Å3
Mr = 398.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.256 (3) ŵ = 0.15 mm1
b = 14.834 (5) ÅT = 293 K
c = 15.957 (5) Å0.20 × 0.15 × 0.10 mm
β = 104.979 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3727 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2051 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.985Rint = 0.062
8613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.97Δρmax = 0.31 e Å3
3727 reflectionsΔρmin = 0.26 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.94766 (7)0.82149 (5)0.17049 (5)0.0462 (2)
O11.07959 (19)0.86319 (13)0.14963 (12)0.0610 (5)
N10.7482 (2)0.95767 (14)0.10903 (14)0.0474 (6)
N20.5294 (2)0.92851 (16)0.15003 (14)0.0541 (6)
C10.9408 (3)0.70132 (18)0.15094 (16)0.0452 (7)
C20.8295 (3)0.64515 (19)0.16542 (17)0.0565 (8)
H2A0.75350.66940.18680.068*
C30.8303 (4)0.5541 (2)0.14860 (19)0.0663 (9)
H3A0.75440.51750.15800.080*
C40.9415 (5)0.5175 (2)0.1183 (2)0.0790 (10)
H4A0.94260.45590.10790.095*
C51.0525 (4)0.5717 (3)0.1030 (2)0.0827 (11)
H5A1.12790.54660.08150.099*
C61.0526 (3)0.6642 (2)0.11949 (18)0.0642 (8)
H6A1.12810.70060.10930.077*
C70.9490 (3)0.83949 (16)0.28216 (17)0.0446 (7)
C80.8315 (3)0.81862 (18)0.3181 (2)0.0559 (7)
H8A0.74200.79710.28260.067*
C90.8460 (4)0.8295 (2)0.4062 (2)0.0705 (9)
H9A0.76690.81480.42970.085*
C100.9767 (4)0.8619 (2)0.4584 (2)0.0834 (11)
H10A0.98700.86820.51770.100*
C111.0927 (4)0.8849 (2)0.4240 (2)0.0823 (10)
H11A1.18060.90820.45970.099*
C121.0794 (3)0.8738 (2)0.33689 (19)0.0628 (8)
H12A1.15880.88960.31410.075*
C130.7705 (3)0.86041 (17)0.10364 (17)0.0483 (7)
H13A0.76370.84460.04380.058*
H13B0.69070.82930.12090.058*
C140.6136 (3)0.98871 (18)0.12174 (16)0.0436 (7)
C150.5704 (3)1.07848 (19)0.10800 (17)0.0532 (7)
H15A0.62981.11920.08760.064*
C160.4399 (3)1.1063 (2)0.12471 (19)0.0658 (9)
H16A0.41041.16630.11650.079*
C170.3527 (3)1.0449 (3)0.1538 (2)0.0694 (9)
H17A0.26321.06200.16550.083*
C180.4018 (3)0.9581 (2)0.16479 (19)0.0670 (9)
H18A0.34230.91650.18390.080*
C190.8318 (3)1.01498 (18)0.06454 (17)0.0530 (7)
H19A0.76221.04120.01430.064*
H19B0.90080.97750.04350.064*
C200.9192 (3)1.09025 (17)0.11787 (18)0.0445 (7)
C210.9669 (3)1.16101 (19)0.0744 (2)0.0580 (8)
H21A0.94061.16220.01410.070*
C221.0529 (4)1.2294 (2)0.1205 (3)0.0770 (10)
H22A1.08541.27610.09090.092*
C231.0911 (4)1.2291 (2)0.2091 (3)0.0821 (11)
H23A1.14941.27540.23970.098*
C241.0433 (3)1.1607 (2)0.2531 (2)0.0742 (10)
H24A1.06781.16100.31340.089*
C250.9581 (3)1.0908 (2)0.20716 (19)0.0572 (8)
H25A0.92711.04390.23710.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0439 (4)0.0426 (4)0.0509 (5)0.0024 (3)0.0101 (3)0.0008 (4)
O10.0503 (11)0.0663 (14)0.0694 (13)0.0141 (10)0.0212 (10)0.0018 (11)
N10.0518 (14)0.0347 (14)0.0572 (15)0.0018 (10)0.0169 (11)0.0004 (11)
N20.0443 (14)0.0582 (16)0.0584 (16)0.0001 (12)0.0108 (12)0.0099 (12)
C10.0504 (17)0.0426 (17)0.0410 (16)0.0075 (13)0.0089 (13)0.0004 (13)
C20.067 (2)0.0463 (19)0.0536 (18)0.0000 (15)0.0110 (15)0.0060 (15)
C30.091 (2)0.044 (2)0.060 (2)0.0029 (17)0.0115 (18)0.0073 (16)
C40.118 (3)0.044 (2)0.067 (2)0.011 (2)0.010 (2)0.0079 (18)
C50.097 (3)0.075 (3)0.076 (3)0.036 (2)0.023 (2)0.011 (2)
C60.070 (2)0.061 (2)0.061 (2)0.0087 (16)0.0161 (16)0.0024 (17)
C70.0465 (16)0.0351 (16)0.0500 (17)0.0031 (12)0.0087 (13)0.0001 (13)
C80.0616 (19)0.0434 (18)0.064 (2)0.0003 (14)0.0182 (15)0.0047 (16)
C90.087 (3)0.061 (2)0.074 (2)0.0002 (18)0.039 (2)0.0012 (19)
C100.102 (3)0.093 (3)0.052 (2)0.001 (2)0.015 (2)0.006 (2)
C110.081 (3)0.096 (3)0.062 (2)0.017 (2)0.005 (2)0.012 (2)
C120.062 (2)0.066 (2)0.057 (2)0.0065 (16)0.0097 (16)0.0044 (17)
C130.0517 (17)0.0371 (16)0.0525 (17)0.0040 (12)0.0070 (13)0.0005 (13)
C140.0422 (16)0.0440 (18)0.0393 (16)0.0028 (13)0.0008 (13)0.0012 (13)
C150.0527 (18)0.0458 (18)0.0534 (18)0.0038 (14)0.0000 (14)0.0005 (15)
C160.059 (2)0.058 (2)0.065 (2)0.0117 (17)0.0108 (17)0.0104 (17)
C170.0501 (19)0.084 (3)0.068 (2)0.0116 (19)0.0041 (16)0.0053 (19)
C180.049 (2)0.082 (3)0.068 (2)0.0062 (17)0.0107 (16)0.0095 (18)
C190.0655 (19)0.0456 (18)0.0533 (18)0.0041 (14)0.0251 (15)0.0014 (14)
C200.0443 (16)0.0389 (17)0.0552 (19)0.0009 (12)0.0220 (14)0.0042 (14)
C210.0567 (18)0.052 (2)0.070 (2)0.0024 (15)0.0251 (16)0.0086 (16)
C220.071 (2)0.049 (2)0.115 (3)0.0108 (17)0.032 (2)0.002 (2)
C230.067 (2)0.064 (3)0.116 (3)0.0192 (18)0.024 (2)0.026 (2)
C240.064 (2)0.090 (3)0.068 (2)0.0114 (19)0.0168 (17)0.029 (2)
C250.063 (2)0.056 (2)0.057 (2)0.0102 (15)0.0237 (15)0.0038 (16)
Geometric parameters (Å, º) top
P1—O11.4815 (18)C7—C121.390 (3)
P1—C71.799 (3)C8—C91.387 (4)
P1—C131.804 (2)C9—C101.367 (4)
P1—C11.808 (3)C10—C111.370 (4)
N1—C141.391 (3)C11—C121.374 (4)
N1—C191.452 (3)C14—C151.392 (4)
N1—C131.463 (3)C15—C161.366 (4)
N2—C181.337 (3)C16—C171.375 (4)
N2—C141.338 (3)C17—C181.362 (4)
C1—C61.376 (4)C19—C201.507 (3)
C1—C21.390 (4)C20—C251.376 (3)
C2—C31.378 (4)C20—C211.391 (3)
C3—C41.359 (4)C21—C221.378 (4)
C4—C51.375 (5)C22—C231.367 (4)
C5—C61.398 (4)C23—C241.370 (4)
C7—C81.389 (4)C24—C251.391 (4)
O1—P1—C7111.44 (11)C10—C9—C8119.9 (3)
O1—P1—C13114.16 (12)C9—C10—C11120.3 (3)
C7—P1—C13108.12 (12)C10—C11—C12120.1 (3)
O1—P1—C1111.55 (12)C11—C12—C7121.1 (3)
C7—P1—C1107.96 (12)N1—C13—P1113.68 (17)
C13—P1—C1103.14 (12)N2—C14—C15121.5 (3)
C14—N1—C19119.2 (2)N2—C14—N1116.7 (2)
C14—N1—C13118.7 (2)C15—C14—N1121.7 (3)
C19—N1—C13116.6 (2)C16—C15—C14119.4 (3)
C18—N2—C14117.3 (3)C15—C16—C17119.4 (3)
C6—C1—C2118.7 (3)C18—C17—C16117.7 (3)
C6—C1—P1117.4 (2)N2—C18—C17124.7 (3)
C2—C1—P1123.9 (2)N1—C19—C20115.7 (2)
C3—C2—C1121.0 (3)C25—C20—C21118.6 (3)
C4—C3—C2120.2 (3)C25—C20—C19123.2 (2)
C3—C4—C5120.0 (3)C21—C20—C19118.1 (3)
C4—C5—C6120.3 (3)C22—C21—C20120.3 (3)
C1—C6—C5119.8 (3)C23—C22—C21120.6 (3)
C8—C7—C12117.9 (3)C22—C23—C24120.1 (3)
C8—C7—P1124.7 (2)C23—C24—C25119.7 (3)
C12—C7—P1117.4 (2)C20—C25—C24120.7 (3)
C9—C8—C7120.7 (3)
O1—P1—C1—C60.7 (2)C19—N1—C13—P174.4 (3)
C7—P1—C1—C6123.4 (2)O1—P1—C13—N159.4 (2)
C13—P1—C1—C6122.3 (2)C7—P1—C13—N165.2 (2)
O1—P1—C1—C2179.6 (2)C1—P1—C13—N1179.41 (19)
C7—P1—C1—C256.9 (2)C18—N2—C14—C150.1 (4)
C13—P1—C1—C257.4 (2)C18—N2—C14—N1178.2 (2)
C6—C1—C2—C30.1 (4)C19—N1—C14—N2169.4 (2)
P1—C1—C2—C3179.6 (2)C13—N1—C14—N216.6 (3)
C1—C2—C3—C40.7 (4)C19—N1—C14—C1512.2 (4)
C2—C3—C4—C51.0 (5)C13—N1—C14—C15165.1 (2)
C3—C4—C5—C60.8 (5)N2—C14—C15—C160.8 (4)
C2—C1—C6—C50.1 (4)N1—C14—C15—C16177.4 (2)
P1—C1—C6—C5179.8 (2)C14—C15—C16—C170.8 (4)
C4—C5—C6—C10.2 (5)C15—C16—C17—C180.2 (4)
O1—P1—C7—C8171.4 (2)C14—N2—C18—C170.6 (4)
C13—P1—C7—C845.2 (3)C16—C17—C18—N20.6 (5)
C1—P1—C7—C865.8 (3)C14—N1—C19—C2077.6 (3)
O1—P1—C7—C1211.0 (2)C13—N1—C19—C20128.9 (2)
C13—P1—C7—C12137.2 (2)N1—C19—C20—C2519.6 (4)
C1—P1—C7—C12111.8 (2)N1—C19—C20—C21162.7 (2)
C12—C7—C8—C91.8 (4)C25—C20—C21—C220.8 (4)
P1—C7—C8—C9175.8 (2)C19—C20—C21—C22177.1 (3)
C7—C8—C9—C100.6 (5)C20—C21—C22—C230.7 (5)
C8—C9—C10—C111.0 (5)C21—C22—C23—C240.2 (5)
C9—C10—C11—C121.4 (5)C22—C23—C24—C251.1 (5)
C10—C11—C12—C70.2 (5)C21—C20—C25—C240.1 (4)
C8—C7—C12—C111.4 (4)C19—C20—C25—C24177.8 (3)
P1—C7—C12—C11176.4 (2)C23—C24—C25—C201.0 (4)
C14—N1—C13—P1132.0 (2)

Experimental details

Crystal data
Chemical formulaC25H23N2OP
Mr398.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.256 (3), 14.834 (5), 15.957 (5)
β (°) 104.979 (6)
V3)2116.5 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
8613, 3727, 2051
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.120, 0.97
No. of reflections3727
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998) and SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
P1—O11.4815 (18)P1—C131.804 (2)
P1—C71.799 (3)P1—C11.808 (3)
O1—P1—C7111.44 (11)O1—P1—C1111.55 (12)
O1—P1—C13114.16 (12)C7—P1—C1107.96 (12)
C7—P1—C13108.12 (12)C13—P1—C1103.14 (12)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds