Download citation
Download citation
link to html
The title compound crystallizes as a centrosymmetric chlorine-bridged dimer, [Cl4Ta–N=PCl2-N(SiMe3)2]2 or [Ta2Cl8(C6H18Cl2N2PSi2)2], with one monomer in the asymmetric unit. The Ta atoms adopt a distorted octahedral geometry with the bridging Cl atom and the N atom of the phosphoraniminate ligand occupying axial positions. The Ta—N—P angle within the complex is 155.9 (2)°, with a Ta—N bond length of 1.827 (4) Å; similar P—N distances are observed within the NPN moiety [1.578 (4) and 1.600 (4) Å]. The P atom exists in a distorted tetrahedral geometry, while the silyl­ated terminal N atom is close to planar [angle sum = 358.8 (3)°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007256/bt6258sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007256/bt6258Isup2.hkl
Contains datablock I

CCDC reference: 214561

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](Si-C) = 0.007 Å
  • R factor = 0.036
  • wR factor = 0.088
  • Data-to-parameter ratio = 26.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.703 Tmax scaled 0.368 Tmin scaled 0.289

Comment top

As part our investigations into the use of novel inorganic heterocycles as monomers for ring-opening polymerization (ROP) reactions (Manners, 1996; Gates & Manners, 1997), we explored the reaction of the silylated aminoiminophosphoranimine (Me3Si)2NPCl2NSiMe3 with various metal halides to give four-membered MNPN rings (M = group 4 or 5 metal) (Rivard et al., 2001, 2002). In the reaction of TaCl5 with (Me3Si)2NPCl2NSiMe3, we occasionally also obtained the linear isomer [Cl4Ta—NPCl2—N(SiMe3)2]2, (I).

Experimental top

Under an atmosphere of N2, one equivalent of (Me3Si)2NPCl2NSiMe3 (1.09 g, 3.12 mmol; Niecke & Bitter, 1976) was reacted with TaCl5 (1.04 g, 2.90 mmol) at 298 K in 70 ml of dichloromethane. After 16 h, the volatiles were removed and the remaining white precipitate was washed with hexanes (2 × 50 ml) and recrystallized from dichloromethane (2 ml, 270 K) to give colourless blocks of (I). Yield: 0.11 g (6%). 31P{1H} NMR (CDCl3): 19.1 (s) p.p.m.; 1H NMR (CDCl3): 0.66 (s) p.p.m.

Refinement top

All H atoms were placed in calculated positions with C—H distances of 0.98 Å and included in the refinement in riding motion approximation with Uiso = 1.5Ueq of the carrier atom. The methyl groups were allowed to rotate but not to tip. The two largest electron-density peaks of 2.28 and 2.17 e Å−3 found in the final difference Fourier were within 1.0 Å of the Ta atom. The next largest peak was 0.81 e Å−3.

Computing details top

Data collection: COLLECT (Nonius, 1997-2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of centrosymmetric dimer of (I) with the crystallographic labeling scheme [symmetry code: (i) −x + 1, −y + 1, −z]. Displacement ellipsoids are at the 30% probability level. The H atoms are not shown.
[Figure 2] Fig. 2. Packing diagram of (I) (Spek, 2002). The following are the atom colour codes: purple Ta, green Cl, pink P, brown Si, blue N and black C.
(I) top
Crystal data top
[Ta2Cl8(C6H18Cl2N2PSi2)2]F(000) = 1144
Mr = 1198.05Dx = 2.042 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12859 reflections
a = 9.2497 (3) Åθ = 2.6–27.5°
b = 12.3549 (3) ŵ = 6.66 mm1
c = 17.4418 (6) ÅT = 150 K
β = 102.209 (12)°Plate, colourless
V = 1948.15 (14) Å30.20 × 0.20 × 0.15 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
4422 independent reflections
Radiation source: fine-focus sealed tube3734 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ scans and ω scans with κ offsetsh = 1111
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
k = 1516
Tmin = 0.411, Tmax = 0.524l = 1822
11340 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.045P)2 + 0.0565P]
where P = (Fo2 + 2Fc2)/3
4422 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 2.28 e Å3
0 restraintsΔρmin = 1.40 e Å3
Crystal data top
[Ta2Cl8(C6H18Cl2N2PSi2)2]V = 1948.15 (14) Å3
Mr = 1198.05Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.2497 (3) ŵ = 6.66 mm1
b = 12.3549 (3) ÅT = 150 K
c = 17.4418 (6) Å0.20 × 0.20 × 0.15 mm
β = 102.209 (12)°
Data collection top
Nonius KappaCCD
diffractometer
4422 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
3734 reflections with I > 2σ(I)
Tmin = 0.411, Tmax = 0.524Rint = 0.050
11340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.03Δρmax = 2.28 e Å3
4422 reflectionsΔρmin = 1.40 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ta10.48534 (2)0.426937 (15)0.102779 (11)0.02198 (8)
Cl10.26316 (15)0.39217 (13)0.13975 (8)0.0400 (3)
Cl20.48291 (16)0.60424 (11)0.14879 (8)0.0341 (3)
Cl30.67549 (12)0.48546 (9)0.03136 (6)0.0254 (2)
Cl40.45694 (15)0.26855 (10)0.02711 (8)0.0359 (3)
Cl50.72306 (18)0.14912 (10)0.19600 (8)0.0432 (4)
Cl60.92536 (14)0.34350 (11)0.17422 (8)0.0381 (3)
P10.76000 (14)0.30355 (9)0.22602 (7)0.0226 (3)
Si10.71223 (17)0.41258 (10)0.36934 (8)0.0274 (3)
Si20.98303 (16)0.25322 (11)0.37260 (9)0.0312 (3)
N10.6218 (4)0.3729 (3)0.1852 (2)0.0235 (8)
N20.8105 (4)0.3147 (3)0.3193 (2)0.0236 (8)
C10.7673 (8)0.5502 (4)0.3457 (4)0.0440 (15)
H1A0.73340.56350.28930.066*
H1B0.87530.55670.35990.066*
H1C0.72260.60350.37520.066*
C20.7656 (7)0.3868 (5)0.4770 (3)0.0474 (15)
H2A0.73060.31490.48850.071*
H2B0.72080.44190.50500.071*
H2C0.87350.38990.49390.071*
C30.5095 (6)0.3965 (4)0.3422 (3)0.0351 (12)
H3A0.47130.43390.29250.053*
H3B0.46480.42760.38330.053*
H3C0.48490.31930.33630.053*
C40.9454 (7)0.1657 (5)0.4519 (4)0.0493 (16)
H4A0.94260.20990.49820.074*
H4B1.02380.11130.46520.074*
H4C0.84990.12950.43430.074*
C51.1096 (7)0.3666 (5)0.4075 (4)0.063 (2)
H5A1.07000.40960.44560.095*
H5B1.11890.41240.36290.095*
H5C1.20700.33810.43250.095*
C61.0717 (9)0.1662 (7)0.3098 (4)0.081 (3)
H6A1.00300.10890.28670.122*
H6B1.16140.13370.34150.122*
H6C1.09800.20990.26790.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.02023 (13)0.02803 (14)0.01812 (12)0.00111 (7)0.00507 (8)0.00010 (7)
Cl10.0225 (7)0.0626 (8)0.0368 (8)0.0033 (6)0.0102 (6)0.0099 (7)
Cl20.0422 (8)0.0330 (6)0.0278 (7)0.0058 (6)0.0086 (6)0.0043 (5)
Cl30.0200 (6)0.0358 (6)0.0205 (6)0.0002 (5)0.0047 (4)0.0021 (5)
Cl40.0432 (8)0.0318 (6)0.0304 (7)0.0046 (6)0.0023 (6)0.0037 (5)
Cl50.0663 (10)0.0256 (6)0.0388 (8)0.0011 (6)0.0136 (7)0.0061 (5)
Cl60.0277 (7)0.0584 (8)0.0317 (7)0.0071 (6)0.0140 (5)0.0168 (6)
P10.0259 (7)0.0238 (6)0.0197 (6)0.0006 (5)0.0083 (5)0.0013 (5)
Si10.0347 (8)0.0264 (7)0.0232 (7)0.0002 (6)0.0105 (6)0.0008 (5)
Si20.0304 (8)0.0368 (8)0.0257 (7)0.0060 (6)0.0043 (6)0.0075 (6)
N10.020 (2)0.033 (2)0.018 (2)0.0025 (17)0.0067 (16)0.0026 (17)
N20.024 (2)0.025 (2)0.022 (2)0.0062 (16)0.0049 (16)0.0037 (16)
C10.059 (4)0.032 (3)0.044 (4)0.007 (3)0.017 (3)0.005 (3)
C20.051 (4)0.069 (4)0.025 (3)0.002 (3)0.015 (3)0.007 (3)
C30.035 (3)0.037 (3)0.035 (3)0.009 (2)0.012 (2)0.008 (2)
C40.042 (4)0.053 (4)0.052 (4)0.001 (3)0.007 (3)0.024 (3)
C50.029 (4)0.060 (4)0.094 (6)0.003 (3)0.003 (3)0.020 (4)
C60.085 (6)0.109 (6)0.049 (4)0.073 (5)0.015 (4)0.015 (4)
Geometric parameters (Å, º) top
Ta1—N11.827 (4)C1—H1A0.9800
Ta1—Cl12.3204 (13)C1—H1B0.9800
Ta1—Cl22.3346 (13)C1—H1C0.9800
Ta1—Cl42.3438 (12)C2—H2A0.9800
Ta1—Cl32.4688 (11)C2—H2B0.9800
Ta1—Cl3i2.7177 (12)C2—H2C0.9800
Cl3—Ta1i2.7177 (12)C3—H3A0.9800
Cl5—P11.9888 (17)C3—H3B0.9800
Cl6—P11.9959 (16)C3—H3C0.9800
P1—N11.578 (4)C4—H4A0.9800
P1—N21.600 (4)C4—H4B0.9800
Si1—N21.840 (4)C4—H4C0.9800
Si1—C31.845 (6)C5—H5A0.9800
Si1—C11.847 (5)C5—H5B0.9800
Si1—C21.865 (6)C5—H5C0.9800
Si2—N21.833 (4)C6—H6A0.9800
Si2—C51.844 (7)C6—H6B0.9800
Si2—C41.845 (5)C6—H6C0.9800
Si2—C61.847 (6)
N1—Ta1—Cl1102.65 (12)Si2—N2—Si1119.7 (2)
N1—Ta1—Cl297.35 (12)Si1—C1—H1A109.5
Cl1—Ta1—Cl290.27 (5)Si1—C1—H1B109.5
N1—Ta1—Cl496.55 (12)H1A—C1—H1B109.5
Cl1—Ta1—Cl490.09 (5)Si1—C1—H1C109.5
Cl2—Ta1—Cl4165.66 (5)H1A—C1—H1C109.5
N1—Ta1—Cl393.24 (12)H1B—C1—H1C109.5
Cl1—Ta1—Cl3164.11 (5)Si1—C2—H2A109.5
Cl2—Ta1—Cl387.61 (4)Si1—C2—H2B109.5
Cl4—Ta1—Cl388.13 (4)H2A—C2—H2B109.5
N1—Ta1—Cl3i169.78 (11)Si1—C2—H2C109.5
Cl1—Ta1—Cl3i87.55 (4)H2A—C2—H2C109.5
Cl2—Ta1—Cl3i83.05 (4)H2B—C2—H2C109.5
Cl4—Ta1—Cl3i82.65 (4)Si1—C3—H3A109.5
Cl3—Ta1—Cl3i76.56 (4)Si1—C3—H3B109.5
Ta1—Cl3—Ta1i103.44 (4)H3A—C3—H3B109.5
N1—P1—N2116.53 (19)Si1—C3—H3C109.5
N1—P1—Cl5108.91 (16)H3A—C3—H3C109.5
N2—P1—Cl5110.30 (15)H3B—C3—H3C109.5
N1—P1—Cl6106.65 (15)Si2—C4—H4A109.5
N2—P1—Cl6110.61 (16)Si2—C4—H4B109.5
Cl5—P1—Cl6102.92 (8)H4A—C4—H4B109.5
N2—Si1—C3112.6 (2)Si2—C4—H4C109.5
N2—Si1—C1108.2 (2)H4A—C4—H4C109.5
C3—Si1—C1110.8 (3)H4B—C4—H4C109.5
N2—Si1—C2108.2 (2)Si2—C5—H5A109.5
C3—Si1—C2106.2 (3)Si2—C5—H5B109.5
C1—Si1—C2110.8 (3)H5A—C5—H5B109.5
N2—Si2—C5106.0 (2)Si2—C5—H5C109.5
N2—Si2—C4109.9 (2)H5A—C5—H5C109.5
C5—Si2—C4113.9 (3)H5B—C5—H5C109.5
N2—Si2—C6112.9 (3)Si2—C6—H6A109.5
C5—Si2—C6107.9 (4)Si2—C6—H6B109.5
C4—Si2—C6106.3 (3)H6A—C6—H6B109.5
P1—N1—Ta1155.9 (2)Si2—C6—H6C109.5
P1—N2—Si2121.0 (2)H6A—C6—H6C109.5
P1—N2—Si1118.1 (2)H6B—C6—H6C109.5
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ta2Cl8(C6H18Cl2N2PSi2)2]
Mr1198.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.2497 (3), 12.3549 (3), 17.4418 (6)
β (°) 102.209 (12)
V3)1948.15 (14)
Z2
Radiation typeMo Kα
µ (mm1)6.66
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing 1995)
Tmin, Tmax0.411, 0.524
No. of measured, independent and
observed [I > 2σ(I)] reflections
11340, 4422, 3734
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.03
No. of reflections4422
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.28, 1.40

Computer programs: COLLECT (Nonius, 1997-2002), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXTL (Sheldrick, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
Ta1—N11.827 (4)Cl5—P11.9888 (17)
Ta1—Cl12.3204 (13)Cl6—P11.9959 (16)
Ta1—Cl22.3346 (13)P1—N11.578 (4)
Ta1—Cl42.3438 (12)P1—N21.600 (4)
Ta1—Cl32.4688 (11)Si1—N21.840 (4)
Ta1—Cl3i2.7177 (12)Si2—N21.833 (4)
N1—Ta1—Cl1102.65 (12)Cl1—Ta1—Cl3i87.55 (4)
N1—Ta1—Cl297.35 (12)Cl2—Ta1—Cl3i83.05 (4)
Cl1—Ta1—Cl290.27 (5)Cl4—Ta1—Cl3i82.65 (4)
N1—Ta1—Cl496.55 (12)Cl3—Ta1—Cl3i76.56 (4)
Cl1—Ta1—Cl490.09 (5)Ta1—Cl3—Ta1i103.44 (4)
Cl2—Ta1—Cl4165.66 (5)Cl5—P1—Cl6102.92 (8)
N1—Ta1—Cl393.24 (12)P1—N1—Ta1155.9 (2)
Cl1—Ta1—Cl3164.11 (5)P1—N2—Si2121.0 (2)
Cl2—Ta1—Cl387.61 (4)P1—N2—Si1118.1 (2)
Cl4—Ta1—Cl388.13 (4)Si2—N2—Si1119.7 (2)
N1—Ta1—Cl3i169.78 (11)
Symmetry code: (i) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds