Download citation
Download citation
link to html
In the title compound, C31H40N3O3Cl, the central N-containing ring adopts a boat conformation and the two outer rings adopt conformations intermediate between half-chair and sofa. In the crystal structure, C—H...O hydrogen bonds link the symmetry-related mol­ecules to form centrosymmetric hydrogen-bonded tetramers with R44(24) and R44(52) motifs.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007530/ci6207sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007530/ci6207Isup2.hkl
Contains datablock I

CCDC reference: 214631

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.079
  • wR factor = 0.216
  • Data-to-parameter ratio = 20.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.118
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The acridinediones were found to act as laser dyes, lasing around 475–495 nm (Murugan et al., 1998; Selladurai et al., 1990). The effectiveness of lasing can be controlled by the substitutents at C9 and N10 of the acridine chromophore. The decahydroacridine-1,8-diones act as photo-sensitizers (Timpe et al., 1993) and also possess other important photophysical and electrochemical properties (Mohan et al., 1996). Apart from the above applications, acridine and its derivatives exhibit a wide spectrum of biological activites, such as mutagenic, antitumour (Talacki et al., 1974), antiamoebic (Prasad Krishna et al., 1984), hypertensive, anti-inflammatory (Asthana et al., 1991). An Acridine-moiety-containing drug has been found to possess antiprotozoal activity (Karolak-Wojciechowska et al., 1996) and is considered to be an efficient drug for the treatment of Alzheimer's disease (Bandoli et al., 1994). The ability of acridine to interclate between the base-pairs of DNA is also well known (Neidle, 1979; Fan et al., 1997). Substituted hexahydro acridine-1,8-dione resembles K-channel openers, which relax KCl preconcentrated urinary-bladder smooth muscle in vitro (Li et al., 1996; Trivedi et al., 1995). The present investigation was carried out to establish the three-dimensional structure of the title compound, (I).

The central ring (B) of the acridinedione moiety adopts a boat conformation, with puckering parameters (Cremer & Pople, 1975) q2 = 0.333 (3), q3 = −0.091 (3), Q = 0.345 (3) Å, ϕ2 = −4.7 (5) and θ = 105.3 (5)°; atoms C9 and N10 deviate by 0.406 (3) and 0.175 (2) Å, respectively, from the weighted least-squares plane through atoms C1A, C4A, C5A and C8A. The two outer rings, A and C, adopt conformations intermediate between half-chair and sofa, with Cremer & Pople (1975) puckering parameters q2 = 0.433 (3), q3 = 0.238 (4), Q = 0.495 (4) Å, ϕ2 = −101.2 (4) and θ = 61.2 (4)° for ring A and q2 = 0.411 (3), q3 = −0.248 (3), Q = 0.480 (4), ϕ2 = 109.1 (5) and θ = 121.1 (4)° for ring C. The piperazine ring E adopts a chair conformation. As reported in related acridine derivatives (Sivaraman et al., 1994, 1996; Gunasekaran et al., 1996; Subbiah Pandi et al.,2001; Seshadri et al.,2002), the acridine moiety is folded about the line passing through C9 and N10, with a dihedral angle of 28.7 (1)° between the planes C1/C4/C4A/N10/C9/C1A and C5/C8/C8A/C9/N10/C5A. The weighted least-squares plane through the atoms C1A, C4A, C5A and C8A form a dihedral angle of 87.1 (1)° with the chlorophenyl ring. The torsion angle C5A—C8A—C9—C15 is 91.7 (4)°, showing that the chlorophenyl ring is psuedo-axial to the acridine moiety.

The C—N bond lengths in the B ring are in agreement with values observed for related structures (Gunasekaran et al., 1996; Ganesh et al., 1998; Subbiah Pandi et al., 2001; Jeyakanthan et al., 2000, 2002). The average N—C [1.451 (5) Å] and C—C [1.489 (6) Å] bond lengths in the piperazine ring agree well with those reported in the literature (Perales et al., 1977; Yogavel et al., 2002). The sum of the bond angles around N10 [359.6 (3)°] and N26 [359.9 (4)°] confirm the sp2 hybridization of these atoms; the angles around the atom N23 sum to 333.7 (3)°, which is indicative of sp3 hybridization.

In the cyrstal structure, C24—H24B···O2i hydrogen bonds link symmetry-related molecules to form chains parallel to [101], whereas C13—H13C···O3ii hydrogen bonds (symmetry codes as in Fig. 2) form chains parallel to [110]. The C24—H24B···O2i and C13—H13C···O3ii hydrogen bonds create motifs with graph sets C(12) and C(14), respectively. The interesting feature in the crystal structure of (I) is the formation of centro-symmetric hydrogen-bonded tetramers with R44(24) and R44(52) motifs (Bernstein et al., 1995). The first tetramer is formed via C24—H24B···O2i, C13i—H13Ci···O3iv, C24iv—H24Biv···O2v and C13v—H13Cv···O3 hydrogen bonds. The second tetramer is formed via C13—H13C···O3ii, C24iii—H24Biii···O2ii, C13iii—H13Ciii···O3iand C24—H24B.·O2i hydrogen bonds (Fig 2).

Experimental top

A mixture of the tetraketone (1.0 g, 2.49 mmol) and N-aminoethyl piperazine (0.32 g, 2.49 mmol) was refluxed in acetic acid (15 ml) for 14 h. The reaction mixture was cooled and poured onto crushed ice. The solid obtained was filtered and purified by column chromatography over silica gel and eluted with CHCl3—MeOH (9:1), to isolate the title compound.

Refinement top

All the H atoms were positioned geometically and were allowed to ride on their parent atoms with SHELXL97 (Sheldrick, 1997) defaults for bond lengths and displacement parameters. At this stage, the maximum difference density of 0.62 e Å−3 indicated the presence of a possible atom site. A check for the solvent-accessible volume using PLATON (Spek, 1990) showed a void of 28 Å3. This peak was found near C25, at a distance of 3.21 (2) Å. Attempts to refine this peak as a water oxygen with full occupancy resulted in a high Uiso value and hence it was refined with partial occupancy. The refinement resulted in an occupancy of 0.15, maximum density of 0.19 e Å−3 and R value of 0.074. However, we prefer to report the structure without the solvent water oxygen, as the solvent-accessible volume of 28 Å3 is less than the expected volume of 40 Å3 for a hydrogen bonded water molecule (Spek, 1990). Owing to the poor diffraction quality of the crystal, the ratio of observed to unique relections is too low (0.34) and Rint (0.12) value is high.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 35% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the R44(24) and R44(52) rings [symmetry codes: (i) −1/2 + x, 1/2 − y, −1/2 + z; (ii) 3/2 − x, 1/2 + y, 1/2 − z; (iii) 1 − x, 1 − y, −z; (iv) 1 − x, −y, −z; (v) 3/2 − x, −1/2 + y, 1/2 − z]. For clarity, H atoms not involved in hydrogen bonding have been omitted.
10-[2-(4-acetylpiperzain-1-yl)ethyl]-9-(4-chlorophenyl)-3,3,6,6-tetramethyl- 3,4,6,7,9,10-hexahydro-2H,5H-acridine-1,8-dione top
Crystal data top
C31H40ClN3O3F(000) = 1152
Mr = 538.11Dx = 1.210 Mg m3
Monoclinic, P21/nMelting point: 485-487 K K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.3624 (6) ÅCell parameters from 4320 reflections
b = 21.4915 (12) Åθ = 1.8–28.3°
c = 13.5314 (8) ŵ = 0.17 mm1
β = 101.492 (1)°T = 293 K
V = 2953.1 (3) Å3Plate, light yellow
Z = 40.50 × 0.24 × 0.14 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
2446 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.118
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
ω scansh = 1313
19702 measured reflectionsk = 2528
7195 independent reflectionsl = 1317
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0816P)2]
where P = (Fo2 + 2Fc2)/3
7195 reflections(Δ/σ)max < 0.001
348 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C31H40ClN3O3V = 2953.1 (3) Å3
Mr = 538.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3624 (6) ŵ = 0.17 mm1
b = 21.4915 (12) ÅT = 293 K
c = 13.5314 (8) Å0.50 × 0.24 × 0.14 mm
β = 101.492 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
2446 reflections with I > 2σ(I)
19702 measured reflectionsRint = 0.118
7195 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 0.90Δρmax = 0.62 e Å3
7195 reflectionsΔρmin = 0.25 e Å3
348 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.69046 (13)0.03634 (6)0.57454 (13)0.1220 (6)
O10.1304 (2)0.23575 (12)0.4932 (2)0.0633 (7)
O20.4961 (2)0.36457 (12)0.4605 (2)0.0629 (7)
O30.5716 (4)0.08411 (15)0.1789 (3)0.1189 (14)
C10.1158 (3)0.22185 (15)0.4033 (3)0.0471 (9)
C1A0.2214 (3)0.22942 (14)0.3476 (3)0.0387 (8)
C20.0145 (3)0.19858 (19)0.3457 (3)0.0635 (11)
H2A0.06550.23360.31360.076*
H2B0.06300.17990.39250.076*
C30.0004 (3)0.1512 (2)0.2661 (3)0.0597 (11)
C40.0824 (3)0.18172 (17)0.1948 (3)0.0522 (10)
H4A0.11080.14940.15380.063*
H4B0.02600.21000.14970.063*
C4A0.2011 (3)0.21679 (14)0.2478 (3)0.0373 (8)
C50.4395 (3)0.32298 (14)0.1571 (2)0.0415 (8)
H5A0.37370.35140.12130.050*
H5B0.46480.29530.10760.050*
C5A0.3780 (3)0.28474 (14)0.2299 (2)0.0354 (8)
C60.5608 (3)0.36065 (16)0.2075 (3)0.0479 (9)
C70.5263 (4)0.39454 (16)0.2979 (3)0.0576 (10)
H7A0.60380.41630.33350.069*
H7B0.45910.42540.27380.069*
C80.4774 (3)0.35183 (17)0.3701 (3)0.0487 (10)
C8A0.4044 (3)0.29643 (14)0.3294 (2)0.0377 (8)
C90.3517 (3)0.25538 (15)0.4023 (2)0.0416 (9)
H90.33520.28140.45790.050*
N100.2885 (2)0.23827 (11)0.18920 (19)0.0359 (7)
C110.0683 (4)0.09327 (18)0.3143 (3)0.0804 (14)
H11A0.15800.10290.34440.121*
H11B0.06660.06180.26370.121*
H11C0.02350.07840.36520.121*
C120.1351 (4)0.1333 (2)0.2022 (4)0.1033 (18)
H12A0.18820.11470.24480.155*
H12B0.12320.10420.15100.155*
H12C0.17820.17000.17110.155*
C130.6786 (3)0.31717 (18)0.2418 (3)0.0652 (11)
H13A0.69410.29330.18530.098*
H13B0.66000.28950.29290.098*
H13C0.75540.34140.26860.098*
C140.5948 (4)0.40778 (18)0.1312 (3)0.0718 (12)
H14A0.67330.42990.16100.108*
H14B0.52340.43670.11270.108*
H14C0.60880.38620.07210.108*
C150.4429 (3)0.20189 (16)0.4471 (3)0.0432 (9)
C160.5410 (4)0.17892 (17)0.4016 (3)0.0579 (10)
H160.55610.19730.34270.069*
C170.6173 (4)0.12873 (18)0.4428 (3)0.0695 (12)
H170.68380.11410.41180.083*
C180.5959 (4)0.10113 (19)0.5272 (4)0.0731 (13)
C190.5014 (5)0.1228 (2)0.5748 (4)0.0911 (16)
H190.48710.10380.63340.109*
C200.4270 (4)0.1732 (2)0.5351 (3)0.0750 (13)
H200.36370.18850.56880.090*
C210.2778 (3)0.21903 (16)0.0836 (2)0.0467 (9)
H21A0.28200.25560.04220.056*
H21B0.19320.19920.06010.056*
C220.3863 (4)0.17441 (16)0.0711 (3)0.0588 (11)
H22A0.37880.16520.00010.071*
H22B0.47080.19430.09470.071*
N230.3824 (3)0.11627 (13)0.1259 (2)0.0550 (8)
C240.2969 (4)0.07022 (17)0.0676 (3)0.0645 (12)
H24A0.33150.05900.00840.077*
H24B0.21000.08790.04490.077*
C250.2864 (4)0.01334 (18)0.1284 (4)0.0815 (15)
H25A0.24470.02360.18440.098*
H25B0.23250.01750.08690.098*
N260.4175 (3)0.01207 (15)0.1665 (3)0.0818 (12)
C270.5076 (5)0.0329 (2)0.2214 (4)0.0976 (17)
H27A0.59490.01480.23940.117*
H27B0.47940.04420.28320.117*
C280.5123 (4)0.08952 (19)0.1588 (4)0.0767 (14)
H28A0.56990.12010.19760.092*
H28B0.54850.07870.10020.092*
C290.4566 (5)0.0684 (2)0.1500 (4)0.0753 (13)
C300.3606 (5)0.1136 (2)0.0963 (5)0.114 (2)
H30A0.40610.15010.08100.171*
H30B0.31370.09530.03480.171*
H30C0.29950.12470.13820.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1015 (10)0.0847 (9)0.1648 (15)0.0122 (7)0.0096 (10)0.0611 (9)
O10.0683 (18)0.0767 (19)0.0541 (18)0.0027 (14)0.0350 (14)0.0008 (16)
O20.0694 (18)0.0730 (18)0.0472 (17)0.0212 (13)0.0141 (14)0.0134 (15)
O30.093 (3)0.101 (3)0.163 (4)0.043 (2)0.027 (2)0.025 (2)
C10.051 (2)0.046 (2)0.048 (2)0.0032 (17)0.0177 (19)0.002 (2)
C1A0.0348 (19)0.0411 (19)0.042 (2)0.0015 (15)0.0119 (16)0.0001 (18)
C20.042 (2)0.090 (3)0.064 (3)0.001 (2)0.025 (2)0.000 (3)
C30.041 (2)0.083 (3)0.060 (3)0.018 (2)0.022 (2)0.001 (2)
C40.040 (2)0.072 (2)0.046 (2)0.0090 (18)0.0107 (17)0.002 (2)
C4A0.0334 (18)0.0391 (18)0.041 (2)0.0039 (14)0.0117 (16)0.0010 (18)
C50.047 (2)0.0424 (19)0.038 (2)0.0016 (16)0.0144 (16)0.0039 (17)
C5A0.0350 (18)0.0369 (18)0.036 (2)0.0026 (15)0.0097 (15)0.0004 (17)
C60.056 (2)0.048 (2)0.042 (2)0.0124 (18)0.0169 (18)0.0026 (19)
C70.077 (3)0.050 (2)0.050 (2)0.021 (2)0.020 (2)0.002 (2)
C80.045 (2)0.058 (2)0.044 (2)0.0052 (18)0.0118 (18)0.008 (2)
C8A0.0382 (19)0.0425 (19)0.034 (2)0.0038 (15)0.0116 (16)0.0007 (17)
C90.044 (2)0.051 (2)0.0321 (19)0.0066 (16)0.0125 (16)0.0044 (17)
N100.0372 (15)0.0418 (15)0.0304 (16)0.0028 (12)0.0106 (13)0.0029 (14)
C110.104 (4)0.064 (3)0.080 (3)0.022 (3)0.037 (3)0.004 (3)
C120.053 (3)0.171 (5)0.090 (4)0.055 (3)0.023 (3)0.016 (4)
C130.042 (2)0.084 (3)0.073 (3)0.010 (2)0.018 (2)0.001 (2)
C140.088 (3)0.067 (3)0.068 (3)0.027 (2)0.036 (2)0.005 (2)
C150.045 (2)0.053 (2)0.0307 (19)0.0123 (17)0.0049 (17)0.0045 (18)
C160.068 (3)0.064 (2)0.043 (2)0.002 (2)0.014 (2)0.010 (2)
C170.070 (3)0.064 (3)0.071 (3)0.014 (2)0.006 (2)0.013 (3)
C180.064 (3)0.061 (3)0.084 (4)0.007 (2)0.008 (3)0.034 (3)
C190.079 (3)0.110 (4)0.085 (4)0.007 (3)0.020 (3)0.060 (3)
C200.064 (3)0.096 (3)0.068 (3)0.001 (2)0.020 (2)0.033 (3)
C210.055 (2)0.050 (2)0.037 (2)0.0054 (17)0.0126 (17)0.0034 (19)
C220.066 (3)0.052 (2)0.068 (3)0.005 (2)0.036 (2)0.013 (2)
N230.0503 (19)0.0448 (18)0.071 (2)0.0002 (15)0.0137 (17)0.0070 (17)
C240.049 (2)0.053 (2)0.091 (3)0.0048 (19)0.013 (2)0.004 (2)
C250.061 (3)0.050 (3)0.134 (4)0.008 (2)0.021 (3)0.001 (3)
N260.072 (2)0.043 (2)0.124 (3)0.0112 (18)0.003 (2)0.004 (2)
C270.085 (3)0.070 (3)0.122 (5)0.003 (3)0.020 (3)0.004 (3)
C280.054 (3)0.067 (3)0.103 (4)0.003 (2)0.003 (3)0.013 (3)
C290.079 (3)0.057 (3)0.098 (4)0.012 (3)0.039 (3)0.021 (3)
C300.121 (4)0.053 (3)0.182 (6)0.003 (3)0.067 (4)0.014 (3)
Geometric parameters (Å, º) top
Cl1—C181.749 (4)C13—H13A0.96
O1—C11.232 (4)C13—H13B0.96
O2—C81.230 (4)C13—H13C0.96
O3—C291.226 (5)C14—H14A0.96
C1—C1A1.456 (5)C14—H14B0.96
C1—C21.504 (5)C14—H14C0.96
C1A—C4A1.353 (4)C15—C161.380 (5)
C1A—C91.511 (4)C15—C201.379 (5)
C2—C31.511 (5)C16—C171.387 (5)
C2—H2A0.97C16—H160.93
C2—H2B0.97C17—C181.344 (6)
C3—C111.513 (5)C17—H170.93
C3—C121.543 (5)C18—C191.357 (6)
C3—C41.553 (5)C19—C201.375 (6)
C4—C4A1.498 (4)C19—H190.93
C4—H4A0.97C20—H200.93
C4—H4B0.97C21—C221.512 (4)
C4A—N101.396 (4)C21—H21A0.97
C5—C5A1.517 (4)C21—H21B0.97
C5—C61.536 (4)C22—N231.458 (4)
C5—H5A0.97C22—H22A0.97
C5—H5B0.97C22—H22B0.97
C5A—C8A1.344 (4)N23—C281.449 (4)
C5A—N101.399 (4)N23—C241.452 (4)
C6—C71.526 (5)C24—C251.489 (5)
C6—C131.534 (5)C24—H24A0.97
C6—C141.537 (5)C24—H24B0.97
C7—C81.501 (5)C25—N261.459 (5)
C7—H7A0.97C25—H25A0.97
C7—H7B0.97C25—H25B0.97
C8—C8A1.459 (4)N26—C291.310 (5)
C8A—C91.504 (4)N26—C271.444 (5)
C9—C151.534 (5)C27—C281.489 (6)
C9—H90.98C27—H27A0.97
N10—C211.471 (4)C27—H27B0.97
C11—H11A0.96C28—H28A0.97
C11—H11B0.96C28—H28B0.97
C11—H11C0.96C29—C301.474 (6)
C12—H12A0.96C30—H30A0.96
C12—H12B0.96C30—H30B0.96
C12—H12C0.96C30—H30C0.96
O1—C1—C1A121.8 (3)C6—C13—H13C109.5
O1—C1—C2120.9 (3)H13A—C13—H13C109.5
C1A—C1—C2117.3 (3)H13B—C13—H13C109.5
C4A—C1A—C1120.7 (3)C6—C14—H14A109.5
C4A—C1A—C9120.6 (3)C6—C14—H14B109.5
C1—C1A—C9118.6 (3)H14A—C14—H14B109.5
C1—C2—C3112.6 (3)C6—C14—H14C109.5
C1—C2—H2A109.1H14A—C14—H14C109.5
C3—C2—H2A109.1H14B—C14—H14C109.5
C1—C2—H2B109.1C16—C15—C20116.8 (4)
C3—C2—H2B109.1C16—C15—C9122.8 (3)
H2A—C2—H2B107.8C20—C15—C9120.4 (4)
C2—C3—C11110.6 (3)C15—C16—C17120.7 (4)
C2—C3—C12110.9 (3)C15—C16—H16119.6
C11—C3—C12109.2 (4)C17—C16—H16119.6
C2—C3—C4107.8 (3)C18—C17—C16120.5 (4)
C11—C3—C4110.5 (3)C18—C17—H17119.8
C12—C3—C4107.8 (3)C16—C17—H17119.8
C4A—C4—C3114.4 (3)C17—C18—C19120.6 (4)
C4A—C4—H4A108.7C17—C18—Cl1119.2 (4)
C3—C4—H4A108.7C19—C18—Cl1120.3 (4)
C4A—C4—H4B108.7C18—C19—C20119.1 (4)
C3—C4—H4B108.7C18—C19—H19120.4
H4A—C4—H4B107.6C20—C19—H19120.4
C1A—C4A—N10120.8 (3)C19—C20—C15122.3 (4)
C1A—C4A—C4121.9 (3)C19—C20—H20118.8
N10—C4A—C4117.3 (3)C15—C20—H20118.8
C5A—C5—C6114.1 (3)N10—C21—C22111.9 (3)
C5A—C5—H5A108.7N10—C21—H21A109.2
C6—C5—H5A108.7C22—C21—H21A109.2
C5A—C5—H5B108.7N10—C21—H21B109.2
C6—C5—H5B108.7C22—C21—H21B109.2
H5A—C5—H5B107.6H21A—C21—H21B107.9
C8A—C5A—N10120.9 (3)N23—C22—C21113.0 (3)
C8A—C5A—C5121.5 (3)N23—C22—H22A109.0
N10—C5A—C5117.6 (3)C21—C22—H22A109.0
C7—C6—C13110.4 (3)N23—C22—H22B109.0
C7—C6—C5107.9 (3)C21—C22—H22B109.0
C13—C6—C5110.2 (3)H22A—C22—H22B107.8
C7—C6—C14110.2 (3)C28—N23—C24109.0 (3)
C13—C6—C14109.2 (3)C28—N23—C22112.2 (3)
C5—C6—C14109.0 (3)C24—N23—C22112.5 (3)
C8—C7—C6113.2 (3)N23—C24—C25111.3 (3)
C8—C7—H7A108.9N23—C24—H24A109.4
C6—C7—H7A108.9C25—C24—H24A109.4
C8—C7—H7B108.9N23—C24—H24B109.4
C6—C7—H7B108.9C25—C24—H24B109.4
H7A—C7—H7B107.8H24A—C24—H24B108.0
O2—C8—C8A121.6 (3)N26—C25—C24109.7 (3)
O2—C8—C7120.3 (3)N26—C25—H25A109.7
C8A—C8—C7118.1 (3)C24—C25—H25A109.7
C5A—C8A—C8121.2 (3)N26—C25—H25B109.7
C5A—C8A—C9121.3 (3)C24—C25—H25B109.7
C8—C8A—C9117.4 (3)H25A—C25—H25B108.2
C8A—C9—C1A107.6 (3)C29—N26—C27121.1 (4)
C8A—C9—C15115.1 (3)C29—N26—C25125.7 (4)
C1A—C9—C15109.7 (3)C27—N26—C25113.1 (3)
C8A—C9—H9108.1N26—C27—C28110.2 (4)
C1A—C9—H9108.1N26—C27—H27A109.6
C15—C9—H9108.1C28—C27—H27A109.6
C4A—N10—C5A117.9 (3)N26—C27—H27B109.6
C4A—N10—C21121.8 (3)C28—C27—H27B109.6
C5A—N10—C21119.9 (3)H27A—C27—H27B108.1
C3—C11—H11A109.5N23—C28—C27111.4 (4)
C3—C11—H11B109.5N23—C28—H28A109.3
H11A—C11—H11B109.5C27—C28—H28A109.3
C3—C11—H11C109.5N23—C28—H28B109.3
H11A—C11—H11C109.5C27—C28—H28B109.3
H11B—C11—H11C109.5H28A—C28—H28B108.0
C3—C12—H12A109.5O3—C29—N26120.9 (5)
C3—C12—H12B109.5O3—C29—C30119.6 (4)
H12A—C12—H12B109.5N26—C29—C30119.4 (4)
C3—C12—H12C109.5C29—C30—H30A109.5
H12A—C12—H12C109.5C29—C30—H30B109.5
H12B—C12—H12C109.5H30A—C30—H30B109.5
C6—C13—H13A109.5C29—C30—H30C109.5
C6—C13—H13B109.5H30A—C30—H30C109.5
H13A—C13—H13B109.5H30B—C30—H30C109.5
O1—C1—C1A—C4A176.7 (3)C1—C1A—C9—C1591.2 (3)
C2—C1—C1A—C4A1.0 (5)C1A—C4A—N10—C5A15.0 (4)
O1—C1—C1A—C90.3 (5)C4—C4A—N10—C5A162.7 (3)
C2—C1—C1A—C9177.4 (3)C1A—C4A—N10—C21172.5 (3)
O1—C1—C2—C3146.3 (4)C4—C4A—N10—C219.8 (4)
C1A—C1—C2—C336.0 (4)C8A—C5A—N10—C4A17.7 (4)
C1—C2—C3—C1164.1 (4)C5—C5A—N10—C4A159.8 (3)
C1—C2—C3—C12174.6 (3)C8A—C5A—N10—C21169.6 (3)
C1—C2—C3—C456.8 (4)C5—C5A—N10—C2112.8 (4)
C2—C3—C4—C4A44.8 (4)C8A—C9—C15—C1621.7 (4)
C11—C3—C4—C4A76.2 (4)C1A—C9—C15—C1699.7 (4)
C12—C3—C4—C4A164.5 (3)C8A—C9—C15—C20160.1 (3)
C1—C1A—C4A—N10163.8 (3)C1A—C9—C15—C2078.5 (4)
C9—C1A—C4A—N1012.5 (5)C20—C15—C16—C171.0 (5)
C1—C1A—C4A—C413.8 (5)C9—C15—C16—C17177.2 (3)
C9—C1A—C4A—C4170.0 (3)C15—C16—C17—C180.8 (6)
C3—C4—C4A—C1A10.7 (5)C16—C17—C18—C191.6 (7)
C3—C4—C4A—N10171.7 (3)C16—C17—C18—Cl1177.9 (3)
C6—C5—C5A—C8A17.4 (4)C17—C18—C19—C200.5 (7)
C6—C5—C5A—N10165.0 (3)Cl1—C18—C19—C20179.0 (3)
C5A—C5—C6—C747.8 (4)C18—C19—C20—C151.5 (7)
C5A—C5—C6—C1372.7 (4)C16—C15—C20—C192.2 (6)
C5A—C5—C6—C14167.5 (3)C9—C15—C20—C19176.1 (4)
C13—C6—C7—C865.7 (4)C4A—N10—C21—C22107.6 (3)
C5—C6—C7—C854.7 (4)C5A—N10—C21—C2280.1 (3)
C14—C6—C7—C8173.6 (3)N10—C21—C22—N2362.5 (4)
C6—C7—C8—O2150.2 (3)C21—C22—N23—C28149.6 (3)
C6—C7—C8—C8A31.6 (5)C21—C22—N23—C2487.1 (4)
N10—C5A—C8A—C8168.3 (3)C28—N23—C24—C2559.5 (4)
C5—C5A—C8A—C89.1 (5)C22—N23—C24—C25175.4 (3)
N10—C5A—C8A—C97.4 (5)N23—C24—C25—N2656.5 (5)
C5—C5A—C8A—C9175.2 (3)C24—C25—N26—C29122.3 (5)
O2—C8—C8A—C5A176.2 (3)C24—C25—N26—C2754.0 (5)
C7—C8—C8A—C5A1.9 (5)C29—N26—C27—C28122.6 (5)
O2—C8—C8A—C90.3 (5)C25—N26—C27—C2853.8 (6)
C7—C8—C8A—C9177.8 (3)C24—N23—C28—C2759.1 (5)
C5A—C8A—C9—C1A30.9 (4)C22—N23—C28—C27175.5 (4)
C8—C8A—C9—C1A145.0 (3)N26—C27—C28—N2356.3 (5)
C5A—C8A—C9—C1591.7 (4)C27—N26—C29—O31.5 (7)
C8—C8A—C9—C1592.5 (4)C25—N26—C29—O3174.4 (5)
C4A—C1A—C9—C8A33.4 (4)C27—N26—C29—C30178.2 (5)
C1—C1A—C9—C8A143.0 (3)C25—N26—C29—C305.9 (7)
C4A—C1A—C9—C1592.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.982.472.842 (4)102
C9—H9···O20.982.442.810 (4)102
C27—H27A···O30.972.272.693 (6)105
C24—H24B···O2i0.972.503.461 (4)171
C13—H13C···O3ii0.962.403.354 (5)171
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC31H40ClN3O3
Mr538.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.3624 (6), 21.4915 (12), 13.5314 (8)
β (°) 101.492 (1)
V3)2953.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.50 × 0.24 × 0.14
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19702, 7195, 2446
Rint0.118
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.216, 0.90
No. of reflections7195
No. of parameters348
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.25

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
Cl1—C181.749 (4)C22—N231.458 (4)
O1—C11.232 (4)N23—C281.449 (4)
O2—C81.230 (4)N23—C241.452 (4)
C4A—N101.396 (4)C25—N261.459 (5)
C5A—N101.399 (4)N26—C291.310 (5)
N10—C211.471 (4)
C4A—N10—C5A117.9 (3)C24—N23—C22112.5 (3)
C4A—N10—C21121.8 (3)C29—N26—C27121.1 (4)
C5A—N10—C21119.9 (3)C29—N26—C25125.7 (4)
C28—N23—C24109.0 (3)C27—N26—C25113.1 (3)
C28—N23—C22112.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.982.472.842 (4)102
C9—H9···O20.982.442.810 (4)102
C27—H27A···O30.972.272.693 (6)105
C24—H24B···O2i0.972.503.461 (4)171
C13—H13C···O3ii0.962.403.354 (5)171
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds