Download citation
Download citation
link to html
The title compound, C15H12N4O·CH4O, an aroyl­hydrazone, has been synthesized. The C=O bond length is 1.2302 (18) Å, which suggests that the title compound is in the keto form. The C=N double bond has a length of 1.2789 (19) Å. In the crystal structure, the mol­ecules are stabilized by N—H...N, N—H...O and O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803008286/cv6180sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803008286/cv6180Isup2.hkl
Contains datablock I

CCDC reference: 199884

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.040
  • wR factor = 0.107
  • Data-to-parameter ratio = 13.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The chemical and pharmacological properties of aroylhydrazones have been investigated extensively, owing to their chelating ability with metal ions and to their potentially benefical chemistry and biological activities, such as magnetic (Bu et al., 2001; Zhang et al., 1996), antitumor, antineoplastic, antibacterial and antimalarial activities (Liao et al., 2000; Fun et al., 1996; Lu et al., 1996). As part of our studies on the synthesis and characterization of these compounds, in this paper, we report the synthesis and crystal structure of 3-indolylformaldehyde isonicotinoylhydrazone monomethanol solvate, (I).

It can be seen that the molecule is in the keto form and that the configuration of the N3—C7 bond is E. The bonds and angles observed in this structure are normal and the molecule is practically planar. As the distances for C7N3 and C6O1 are 1.2789 (19) and 1.2302 (18) Å, respectively, typical for double bonds, this is a novel kind of aroylhydrazone. In the crystal, the molecules are stabilized by N—H···N, N—H···O and O—H···O hydrogen bonds (Table 1 and Fig. 2).

Experimental top

The solution of 3-indolylformaldehyde (10 mmol) in 50 ml e thanol was added to a solution of isonicotinoyl hydrazine (10 mmol) in 10 ml e thanol. The reaction mixture was refluxed for 4 h with stirring, then the resulting pale yellow precipitate was obtained by filtration, washed several times with ethanol and dried in vacuo (yield 90%). Analysis calculated for the title compound (C16H16N4O2): C 64.86, H 5.41, N 18.92%; found: C 64.66, H 5.40, N 18.88%. IR (KBr, cm−1): 3340 (–OH), 1657 (CO), 1641 (CN), 1599. The methanol solution of the title compound was slowly evaporated and pale-yellow crystals were obtained after three weeks and used for X-ray diffraction study.

Refinement top

The positions of all H atoms were fixed geometrically.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecule with labelling of the non-H atoms and 30% probabiility ellipsoids.
[Figure 2] Fig. 2. A view of the packing.
3-Indolylformaldehyde isonicotinoylhydrazone monomethanol top
Crystal data top
C15H12N4O·CH4OF(000) = 624
Mr = 296.33Dx = 1.321 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.520 (2) ÅCell parameters from 694 reflections
b = 14.020 (3) Åθ = 2.5–23.6°
c = 11.146 (3) ŵ = 0.09 mm1
β = 115.02 (1)°T = 293 K
V = 1489.7 (6) Å3Plate, pale yellow
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Bruker SMART Apex CCD
diffractometer
1836 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ϕ and ω scansh = 1212
7186 measured reflectionsk = 1612
2621 independent reflectionsl = 1311
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0567P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
2621 reflectionsΔρmax = 0.14 e Å3
202 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (2)
Crystal data top
C15H12N4O·CH4OV = 1489.7 (6) Å3
Mr = 296.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.520 (2) ŵ = 0.09 mm1
b = 14.020 (3) ÅT = 293 K
c = 11.146 (3) Å0.3 × 0.2 × 0.2 mm
β = 115.02 (1)°
Data collection top
Bruker SMART Apex CCD
diffractometer
1836 reflections with I > 2σ(I)
7186 measured reflectionsRint = 0.048
2621 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.96Δρmax = 0.14 e Å3
2621 reflectionsΔρmin = 0.15 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19559 (18)0.28135 (13)0.37420 (18)0.0559 (5)
H10.16910.32840.33040.067*
C20.2996 (2)0.29898 (14)0.41623 (19)0.0659 (6)
H20.34160.35880.39940.079*
C30.27956 (19)0.15215 (15)0.50263 (19)0.0609 (5)
H30.30710.10690.54780.073*
C40.17561 (17)0.12745 (13)0.46488 (17)0.0519 (5)
H40.13510.06720.48400.062*
C50.13182 (15)0.19349 (11)0.39792 (15)0.0407 (4)
C60.01976 (16)0.16207 (12)0.35757 (16)0.0431 (4)
C70.17092 (16)0.25209 (12)0.19377 (15)0.0463 (4)
H70.12920.31180.16980.056*
C80.28288 (16)0.22478 (12)0.15949 (15)0.0439 (4)
C90.32855 (16)0.27403 (13)0.07909 (16)0.0502 (4)
H90.29270.33220.03910.060*
C100.45941 (16)0.14278 (13)0.13866 (16)0.0472 (4)
C110.55589 (18)0.07111 (14)0.15407 (18)0.0591 (5)
H110.61570.07430.11220.071*
C120.5598 (2)0.00428 (14)0.2330 (2)0.0674 (6)
H120.62370.05330.24550.081*
C130.4692 (2)0.00895 (14)0.2954 (2)0.0665 (5)
H130.47480.06090.34930.080*
C140.37244 (18)0.06107 (13)0.27885 (17)0.0547 (5)
H140.31190.05660.31990.066*
C150.36653 (16)0.13929 (12)0.19903 (15)0.0440 (4)
O20.00306 (15)0.43229 (9)0.28725 (14)0.0774 (4)
H2E0.01980.47160.22800.116*
C160.1067 (3)0.4640 (2)0.4007 (3)0.1208 (10)
H2A0.08620.52690.42180.145*
H2B0.19080.46570.38700.145*
H2C0.11970.42150.47250.145*
N10.34306 (15)0.23570 (12)0.47919 (14)0.0610 (4)
N20.02328 (13)0.22389 (10)0.29073 (12)0.0460 (4)
H2D0.01330.27970.26960.055*
N30.12908 (13)0.19360 (10)0.25752 (13)0.0479 (4)
N40.43341 (14)0.22574 (11)0.06633 (13)0.0533 (4)
H4A0.47700.24400.02020.064*
O10.02967 (13)0.08129 (8)0.38568 (13)0.0624 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0630 (11)0.0490 (11)0.0725 (12)0.0071 (9)0.0451 (10)0.0089 (9)
C20.0694 (12)0.0616 (13)0.0850 (14)0.0181 (10)0.0505 (12)0.0089 (11)
C30.0648 (12)0.0679 (13)0.0683 (12)0.0044 (11)0.0459 (10)0.0053 (10)
C40.0575 (10)0.0495 (11)0.0612 (11)0.0011 (9)0.0373 (9)0.0049 (9)
C50.0416 (9)0.0422 (10)0.0440 (9)0.0034 (8)0.0235 (8)0.0046 (7)
C60.0502 (10)0.0372 (10)0.0512 (10)0.0013 (8)0.0305 (8)0.0027 (8)
C70.0476 (10)0.0498 (10)0.0474 (9)0.0012 (8)0.0258 (8)0.0020 (8)
C80.0431 (9)0.0501 (10)0.0443 (9)0.0057 (8)0.0242 (8)0.0025 (8)
C90.0478 (10)0.0569 (11)0.0532 (10)0.0031 (9)0.0284 (8)0.0033 (9)
C100.0458 (9)0.0540 (11)0.0477 (10)0.0090 (9)0.0256 (8)0.0063 (9)
C110.0526 (11)0.0683 (13)0.0706 (12)0.0022 (10)0.0399 (10)0.0079 (10)
C120.0655 (12)0.0576 (12)0.0927 (15)0.0090 (10)0.0464 (12)0.0043 (11)
C130.0712 (12)0.0554 (12)0.0871 (14)0.0026 (11)0.0472 (12)0.0097 (11)
C140.0553 (11)0.0565 (11)0.0649 (12)0.0028 (9)0.0377 (9)0.0014 (9)
C150.0418 (9)0.0525 (11)0.0440 (9)0.0082 (8)0.0241 (8)0.0054 (8)
O20.0863 (10)0.0555 (9)0.0812 (10)0.0098 (8)0.0266 (8)0.0135 (7)
C160.123 (2)0.098 (2)0.103 (2)0.0201 (18)0.0109 (18)0.0075 (17)
N10.0577 (9)0.0746 (11)0.0661 (10)0.0038 (9)0.0411 (8)0.0007 (9)
N20.0489 (8)0.0443 (8)0.0585 (9)0.0069 (7)0.0359 (7)0.0064 (7)
N30.0498 (8)0.0515 (9)0.0559 (9)0.0037 (7)0.0355 (7)0.0010 (7)
N40.0523 (8)0.0667 (10)0.0560 (9)0.0036 (8)0.0374 (7)0.0036 (8)
O10.0833 (9)0.0416 (7)0.0882 (10)0.0115 (7)0.0613 (8)0.0088 (6)
Geometric parameters (Å, º) top
C1—C51.374 (2)C10—N41.375 (2)
C1—C21.382 (2)C10—C111.386 (2)
C1—H10.9300C10—C151.402 (2)
C2—N11.327 (2)C11—C121.365 (3)
C2—H20.9300C11—H110.9300
C3—N11.319 (2)C12—C131.399 (2)
C3—C41.372 (2)C12—H120.9300
C3—H30.9300C13—C141.369 (2)
C4—C51.385 (2)C13—H130.9300
C4—H40.9300C14—C151.397 (2)
C5—C61.495 (2)C14—H140.9300
C6—O11.2302 (18)O2—C161.377 (3)
C6—N21.3403 (19)O2—H2E0.8200
C7—N31.2789 (19)C16—H2A0.9600
C7—C81.435 (2)C16—H2B0.9600
C7—H70.9300C16—H2C0.9600
C8—C91.369 (2)N2—N31.3801 (16)
C8—C151.441 (2)N2—H2D0.8600
C9—N41.352 (2)N4—H4A0.8600
C9—H90.9300
C5—C1—C2119.15 (16)C12—C11—C10117.53 (16)
C5—C1—H1120.4C12—C11—H11121.2
C2—C1—H1120.4C10—C11—H11121.2
N1—C2—C1123.99 (18)C11—C12—C13121.03 (17)
N1—C2—H2118.0C11—C12—H12119.5
C1—C2—H2118.0C13—C12—H12119.5
N1—C3—C4124.49 (17)C14—C13—C12121.58 (17)
N1—C3—H3117.8C14—C13—H13119.2
C4—C3—H3117.8C12—C13—H13119.2
C3—C4—C5119.11 (17)C13—C14—C15118.60 (16)
C3—C4—H4120.4C13—C14—H14120.7
C5—C4—H4120.4C15—C14—H14120.7
C1—C5—C4117.17 (15)C14—C15—C10118.73 (16)
C1—C5—C6126.12 (14)C14—C15—C8134.80 (14)
C4—C5—C6116.72 (15)C10—C15—C8106.47 (14)
O1—C6—N2122.08 (14)C16—O2—H2E109.5
O1—C6—C5119.79 (14)O2—C16—H2A109.5
N2—C6—C5118.13 (15)O2—C16—H2B109.5
N3—C7—C8119.39 (15)H2A—C16—H2B109.5
N3—C7—H7120.3O2—C16—H2C109.5
C8—C7—H7120.3H2A—C16—H2C109.5
C9—C8—C7126.46 (16)H2B—C16—H2C109.5
C9—C8—C15106.35 (14)C3—N1—C2116.08 (15)
C7—C8—C15127.16 (14)C6—N2—N3116.77 (13)
N4—C9—C8110.13 (16)C6—N2—H2D121.6
N4—C9—H9124.9N3—N2—H2D121.6
C8—C9—H9124.9C7—N3—N2117.25 (14)
N4—C10—C11129.75 (15)C9—N4—C10109.31 (13)
N4—C10—C15107.74 (15)C9—N4—H4A125.3
C11—C10—C15122.51 (16)C10—N4—H4A125.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N1i0.862.152.9491 (19)155
N2—H2D···O20.862.152.934 (2)152
O2—H2E···O1ii0.821.972.7751 (18)168
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12N4O·CH4O
Mr296.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.520 (2), 14.020 (3), 11.146 (3)
β (°) 115.02 (1)
V3)1489.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART Apex CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7186, 2621, 1836
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 0.96
No. of reflections2621
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N1i0.862.152.9491 (19)155
N2—H2D···O20.862.152.934 (2)152
O2—H2E···O1ii0.821.972.7751 (18)168
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds