Download citation
Download citation
link to html
In the title compound, C11H9NO, the azulene moiety is planar with a delocalized 10π-electron perimeter. In the crystal structure, the mol­ecules are connected by hydrogen bonds and π-stacking to form chains running along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803008146/cv6182sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803008146/cv6182Isup2.hkl
Contains datablock I

CCDC reference: 214616

Key indicators

  • Powder X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.058
  • wR factor = 0.157
  • Data-to-parameter ratio = 9.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.134 General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.06 From the CIF: _reflns_number_total 1176 Count of symmetry unique reflns 1180 Completeness (_total/calc) 99.66% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Azulene-1-carboxaldehyde oxime was first obtained by Hafner (Hafner & Bernhard, 1959) as a crystalline derivative of azulene-1-carbaldehyde. To determine the configuration of the oxime, the synthesis was optimized. (Z)-Azulene-1-carboxaldehyde oxime, (I), was separated from the (E)-azulene-1-carboxaldehyde oxime and crystallized. No isomerization could be observed in solution in the absence of acids. Compound (I) shows the expected molecular geometry (see Fig. 1), viz. a planar azulene moietiy with a delocalized 10π-electron perimeter [mean C—C distance 1.383 (8) Å] and a central bond length of 1.459 (7) Å. The aldoxime group deviates significantly from the azulene plane with a C2—C1—C11—N11 torsion angle of −17.1 (9)°. The crystal packing is determined by intermolecular hydrogen bond (Table 1) and π-stacking as shown in Fig. 2. Hydrogen bonds connect the molecules into π-stacked chains running along the a axis.

Experimental top

To a mixture of hydroxylammonium chloride (460 mg, 6.6 mmol) and potassium acetate (668 mg, 6.8 mmol) in 40 ml e thanol azulene-1-carbaldehyde (1.0 g, 6.5 mmol) was added and heated to 323 K. After 1.5 h, the solvent was evaporated. Chromatography with silica-gel (hexane/ethyl acetate 4:1) yielded the isomer oximes. Compound (II) crystallized as dark green needles from hexane/ethyl acetate. (Z)-Azulene-1-carboxaldehyde oxime, (I), m.p. 391–392 K; 1H NMR (500 MHz, [D6]DMSO): δ 11.28 (s, 1H, H11O), 8.84 (d, 1H, H8), 8.80 (d, 1H, H2), 8.51 (d, 1H, H4), 8.17 (s, 1H, H11), 7.82 (app.t, 1H, H6), 7.48 (d, 1H, H3), 7.40 (app.q, 2H, H5, H7); J2,3 = 4.1, J4,5 = 9.6, J7,8 = 9.7, J5,6 = J6,7 = 9.8 Hz. 13C NMR (125.75 MHz, [D6]DMSO): δ 140.7 (C10), 140.2 (C2), 138.9 (C6), 138.4 (C11), 137.8 (C9), 137.7 (C4), 134.1 (C8), 125.2 (C5), 124.7 (C7), 118.6 (C1), 118.7 (C3).

Refinement top

H atoms of (I) are treated as riding atoms. The position of the hydroxyl H atom was found in difference Fourier maps and refined.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001) and ORTEPIII (Johnson & Burnett, 1998); software used to prepare material for publication: SHELXL97 CIF and IUCr SHELXL97 template.

Figures top
[Figure 1] Fig. 1. A view of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing plot of (I), view along the a axis.
(Z)-Azulene-1-carboxaldehyde oxime top
Crystal data top
C11H9NODx = 1.269 Mg m3
Mr = 171.19Melting point = 118–119 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 4.631 (5) ÅCell parameters from 6381 reflections
b = 11.068 (5) Åθ = 3.9–27.1°
c = 17.487 (8) ŵ = 0.08 mm1
V = 896.3 (11) Å3T = 293 K
Z = 4Needle, dark green
F(000) = 3600.55 × 0.10 × 0.08 mm
Data collection top
Oxford Diffraction Excalibur (TM) single-crystal X-ray
diffractometer with Sapphire CCD detector
459 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.134
Graphite monochromatorθmax = 27.1°, θmin = 3.9°
Rotation method data acquisition using ω and θ scansh = 35
6381 measured reflectionsk = 714
1176 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0502P)2]
where P = (Fo2 + 2Fc2)/3
1176 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C11H9NOV = 896.3 (11) Å3
Mr = 171.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.631 (5) ŵ = 0.08 mm1
b = 11.068 (5) ÅT = 293 K
c = 17.487 (8) Å0.55 × 0.10 × 0.08 mm
Data collection top
Oxford Diffraction Excalibur (TM) single-crystal X-ray
diffractometer with Sapphire CCD detector
459 reflections with I > 2σ(I)
6381 measured reflectionsRint = 0.134
1176 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 0.93Δρmax = 0.19 e Å3
1176 reflectionsΔρmin = 0.17 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean-plane data from final SHELXL refinement run:

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

3.4810 (0.0054) x − 6.7005 (0.0152) y − 4.5764 (0.0214) z = 1.0394 (0.0064)

* −0.0079 (0.0039) C1 * 0.0222 (0.0042) C2 * 0.0190 (0.0048) C3 * −0.0022 (0.0048) C4 * −0.0011 (0.0051) C5 * 0.0127 (0.0051) C6 * 0.0131 (0.0049) C7 * −0.0029 (0.0043) C8 * −0.0161 (0.0044) C9 * −0.0369 (0.0047) C10 − 0.0782 (0.0069) C11 0.1522 (0.0072) N11 0.5798 (0.0071) O11

Rms deviation of fitted atoms = 0.0170

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2130 (11)0.1303 (5)0.1966 (3)0.0576 (13)
C20.0167 (14)0.0345 (5)0.1942 (3)0.0738 (16)
H20.09030.01070.15180.089*
C30.0091 (15)0.0186 (5)0.2655 (3)0.0808 (17)
H30.10770.08370.27870.097*
C40.2364 (14)0.0106 (5)0.3910 (3)0.0822 (19)
H40.12820.05410.40910.099*
C50.4097 (17)0.0651 (7)0.4432 (3)0.095 (2)
H50.40940.03040.49160.114*
C60.5845 (16)0.1637 (8)0.4348 (3)0.095 (2)
H60.68420.18720.47850.113*
C70.6334 (13)0.2323 (6)0.3717 (4)0.091 (2)
H70.76150.29610.37850.109*
C80.5193 (12)0.2209 (5)0.2981 (3)0.0711 (15)
H80.58250.27760.26260.085*
C90.3277 (11)0.1375 (5)0.2715 (3)0.0584 (14)
C100.1989 (12)0.0382 (5)0.3145 (3)0.0664 (15)
C110.3038 (11)0.2088 (5)0.1353 (3)0.0685 (15)
H110.47290.25130.14520.082*
N110.1930 (10)0.2305 (4)0.0697 (2)0.0713 (13)
O110.0622 (9)0.1690 (4)0.0590 (2)0.0807 (12)
H11O0.14020.19290.01970.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.074 (3)0.054 (3)0.044 (3)0.016 (3)0.007 (3)0.001 (3)
C20.104 (5)0.060 (4)0.057 (3)0.001 (4)0.001 (4)0.004 (3)
C30.108 (5)0.056 (4)0.079 (4)0.005 (4)0.009 (4)0.011 (3)
C40.125 (5)0.068 (4)0.053 (4)0.017 (4)0.006 (4)0.011 (3)
C50.140 (7)0.095 (6)0.051 (4)0.017 (5)0.003 (4)0.015 (4)
C60.119 (6)0.106 (6)0.059 (4)0.016 (5)0.016 (4)0.004 (4)
C70.110 (5)0.094 (5)0.070 (4)0.008 (4)0.017 (4)0.001 (4)
C80.082 (4)0.077 (4)0.055 (3)0.000 (4)0.003 (3)0.007 (3)
C90.074 (4)0.055 (3)0.046 (3)0.007 (3)0.004 (3)0.007 (3)
C100.092 (4)0.052 (3)0.055 (3)0.014 (3)0.006 (3)0.004 (3)
C110.082 (4)0.068 (4)0.055 (3)0.004 (3)0.009 (3)0.001 (3)
N110.092 (3)0.078 (3)0.044 (3)0.012 (3)0.006 (3)0.003 (2)
O110.102 (3)0.092 (3)0.049 (2)0.006 (3)0.008 (2)0.005 (2)
Geometric parameters (Å, º) top
C1—C21.397 (7)C6—C71.357 (9)
C1—C91.415 (7)C6—H60.9300
C1—C111.443 (7)C7—C81.397 (7)
C2—C31.379 (7)C7—H70.9300
C2—H20.9300C8—C91.362 (7)
C3—C101.379 (7)C8—H80.9300
C3—H30.9300C9—C101.459 (7)
C4—C51.357 (8)C11—N111.279 (6)
C4—C101.383 (7)C11—H110.9300
C4—H40.9300N11—O111.376 (5)
C5—C61.367 (8)O11—H11O0.8200
C5—H50.9300
C2—C1—C9108.4 (5)C6—C7—C8129.4 (7)
C2—C1—C11128.6 (5)C6—C7—H7115.3
C9—C1—C11123.0 (5)C8—C7—H7115.3
C3—C2—C1108.2 (5)C9—C8—C7128.5 (5)
C3—C2—H2125.9C9—C8—H8115.8
C1—C2—H2125.9C7—C8—H8115.8
C10—C3—C2110.5 (5)C8—C9—C1126.8 (5)
C10—C3—H3124.7C8—C9—C10126.9 (5)
C2—C3—H3124.7C1—C9—C10106.3 (5)
C5—C4—C10128.9 (6)C3—C10—C4125.5 (6)
C5—C4—H4115.6C3—C10—C9106.5 (5)
C10—C4—H4115.6C4—C10—C9127.8 (6)
C4—C5—C6129.2 (6)N11—C11—C1131.5 (5)
C4—C5—H5115.4N11—C11—H11114.3
C6—C5—H5115.4C1—C11—H11114.3
C7—C6—C5129.2 (6)C11—N11—O11112.0 (5)
C7—C6—H6115.4N11—O11—H11O109.5
C5—C6—H6115.4
C9—C1—C2—C30.6 (5)C11—C1—C9—C10175.7 (4)
C11—C1—C2—C3176.9 (5)C2—C3—C10—C4177.3 (5)
C1—C2—C3—C101.1 (6)C2—C3—C10—C92.3 (6)
C10—C4—C5—C62.5 (12)C5—C4—C10—C3177.2 (6)
C4—C5—C6—C70.9 (12)C5—C4—C10—C93.2 (10)
C5—C6—C7—C80.1 (12)C8—C9—C10—C3177.3 (5)
C6—C7—C8—C90.4 (11)C1—C9—C10—C32.6 (6)
C7—C8—C9—C1178.8 (6)C8—C9—C10—C42.4 (9)
C7—C8—C9—C101.0 (9)C1—C9—C10—C4177.4 (5)
C2—C1—C9—C8177.9 (5)C2—C1—C11—N1117.1 (9)
C11—C1—C9—C84.5 (7)C9—C1—C11—N11165.7 (5)
C2—C1—C9—C101.9 (5)C1—C11—N11—O112.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11O···N11i0.821.942.756 (5)173
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC11H9NO
Mr171.19
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)4.631 (5), 11.068 (5), 17.487 (8)
V3)896.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.55 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Excalibur (TM) single-crystal X-ray
diffractometer with Sapphire CCD detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6381, 1176, 459
Rint0.134
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.157, 0.93
No. of reflections1176
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2001), CrysAlis CCD, CrysAlis RED (Oxford Diffraction, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2001) and ORTEPIII (Johnson & Burnett, 1998), SHELXL97 CIF and IUCr SHELXL97 template.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11O···N11i0.821.942.756 (5)173
Symmetry code: (i) x+1/2, y1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds