Download citation
Download citation
link to html
The title compound, [Ni(C10H8N2)3](ClO4)2, is built up of monomeric [Ni(bpy)3]2+ cations (bpy = 2,2'-bi­pyridine) and two perchlorate anions. The asymmetric unit is one half cation and one anion, a twofold rotation axis passing through the Ni atom and bisecting one bpy ligand. The NiII ion is coordinated by six N atoms from three chelating bpy ligands in a highly distorted octahedral geometry, with Ni-N bond lengths ranging from 2.071 (4) to 2.091 (4) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803008778/dn6068sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803008778/dn6068Isup2.hkl
Contains datablock I

CCDC reference: 214583

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.058
  • wR factor = 0.142
  • Data-to-parameter ratio = 12.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

When trying to prepare the nickel(II) complex containing 2,2'-bipyridine and 1,3,5-benzenetricarboxylate ligands through hydrothermal reaction, we could not obtain the expected compound but instead red prismatic crystals of tris(2,2'-bipyridine)nickel(II) bis(perchlorate), (I), were grown from the above solution by slow evaporation. The new complex has been characterized by elemental analysis and single-crystal diffraction analysis.

The title compound crystallizes in C2/c space group and consists of monomeric [Ni(bpy)3]2+ cations and two perchlorate anions, being isostructural with the zinc(II) complex (Chen et al., 1995a,b). The nickel(II) ion is coordinated by six N atoms from three chleating bpy ligands in a highly distorted octahedral geometry (Fig. 1), with Ni—N bond lengths ranging from 2.071 (4) to 2.091 (4) Å, which is shorter than those [2.135 (2)–2.172 (3) Å] of the ZnII isomorphous compound. this may be attributed to the shorter ionic radius of the Ni2+ cation. It is notable that one chelating bpy is bisected by the twofold axis. Comparing with the ZnII isomorph, each pair of pyridine rings in the three bpy ligands are also non-coplanar, with a dihedral angle between each pair ranging from 7.2 to 18.3°, which is larger than those of the ZnII isomorph. The distorted N—Mn—N angles resulting from the chelating bpy ligands range from 78.6 (1) to 79.1 (2)°, which is larger than those of the ZnII isomorph [75.8 (1)–77.2 (1)°]. The crystal structure of the title compound is constructed by two-dimensional layers parallel to the ab plane. The molecular packing reveals the occurrence of pillars of cations and anions projected down the c axis (Fig. 2).

Experimental top

The hydrothermal reaction of nickel perchlorate (0.06 g, ca 0.20 mmol), 2,2'-bipyridine (0.05 g, 0.32 mmol) and 1,3,5-benzenetricarboxylic acid (0.05 g, 0.24 mmol) in the molar ratio of ca 2:3:2 at 433 K for 4 d gave, after cooling to room temperature at 5 K h−1, a pale green solution. Red prismatic crystals of [Ni(bpy)3](ClO4)2 were grown from the above solution by slow evaporation for about four days and isolated in 54% yield (base on Ni). Elemental analysis calculated for C30H24Cl2N6NiO8: C 49.62, H 3.33, N 11.57%; found: C 49.51, H 3.10, N 11.39%.

Refinement top

The structure was solved by direct methods. Semi-empirical absorption correction was applied by using the SADABS (Sheldrick, 1996) program. All H atoms were located in a difference Fourier map but were introduced in idealized positions and treated as riding models.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the cation and anion of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing structure of the title complex along the c axis. H atoms have been omitted for clarity.
Tris(2,2'-bipyridine)nickel(II) bis(perchlorate) top
Crystal data top
[Ni(C10H8N2)3](ClO4)2F(000) = 1488
Mr = 726.16Dx = 1.589 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2134 reflections
a = 17.502 (2) Åθ = 2.2–25.0°
b = 10.777 (1) ŵ = 0.88 mm1
c = 16.092 (2) ÅT = 293 K
β = 90.959 (2)°Prism, red
V = 3034.8 (6) Å30.46 × 0.34 × 0.26 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
2637 independent reflections
Radiation source: fine-focus sealed tube2026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2012
Tmin = 0.621, Tmax = 0.796k = 128
4475 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0464P)2 + 12.8239P]
where P = (Fo2 + 2Fc2)/3
2637 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ni(C10H8N2)3](ClO4)2V = 3034.8 (6) Å3
Mr = 726.16Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.502 (2) ŵ = 0.88 mm1
b = 10.777 (1) ÅT = 293 K
c = 16.092 (2) Å0.46 × 0.34 × 0.26 mm
β = 90.959 (2)°
Data collection top
Siemens SMART CCD
diffractometer
2637 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2026 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.796Rint = 0.033
4475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0464P)2 + 12.8239P]
where P = (Fo2 + 2Fc2)/3
2637 reflectionsΔρmax = 0.40 e Å3
213 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.47618 (7)0.25000.0366 (2)
Cl0.82564 (7)0.50703 (13)0.36477 (7)0.0582 (4)
C10.6161 (3)0.4270 (5)0.1119 (3)0.0508 (12)
H10.58710.35690.09910.061*
C20.6747 (3)0.4588 (5)0.0607 (3)0.0556 (13)
H20.68480.41170.01380.067*
C30.7178 (3)0.5602 (5)0.0796 (3)0.0564 (13)
H30.75720.58430.04500.068*
C40.7027 (3)0.6264 (5)0.1500 (3)0.0517 (12)
H40.73250.69490.16420.062*
C50.6431 (2)0.5911 (4)0.2000 (3)0.0384 (10)
C60.6225 (2)0.6562 (4)0.2776 (3)0.0403 (10)
C70.6653 (3)0.7517 (5)0.3115 (3)0.0583 (13)
H70.70920.77890.28530.070*
C80.6425 (3)0.8059 (5)0.3838 (4)0.0650 (15)
H80.67150.86920.40770.078*
C90.5774 (3)0.7669 (5)0.4206 (3)0.0561 (13)
H90.56070.80390.46920.067*
C100.5368 (3)0.6718 (4)0.3845 (3)0.0481 (11)
H100.49240.64480.40980.058*
C110.4796 (2)0.2157 (4)0.2094 (3)0.0383 (10)
C120.4680 (3)0.1100 (4)0.1620 (3)0.0526 (12)
H120.48500.03320.18110.063*
C130.4310 (3)0.1199 (5)0.0865 (3)0.0557 (13)
H130.42390.05000.05340.067*
C140.4044 (3)0.2335 (5)0.0599 (3)0.0525 (12)
H140.37800.24120.00960.063*
C150.4178 (3)0.3350 (5)0.1092 (3)0.0490 (12)
H150.39950.41180.09160.059*
N10.5988 (2)0.4930 (3)0.1797 (2)0.0402 (9)
N20.5585 (2)0.6160 (3)0.3142 (2)0.0387 (8)
N30.45655 (19)0.3280 (3)0.1823 (2)0.0387 (8)
O10.8323 (4)0.5843 (7)0.4330 (3)0.145 (2)
O20.8836 (3)0.4142 (5)0.3722 (4)0.131 (2)
O30.7522 (3)0.4515 (5)0.3633 (4)0.1109 (17)
O40.8371 (3)0.5721 (6)0.2927 (3)0.125 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0358 (4)0.0364 (4)0.0376 (4)0.0000.0010 (3)0.000
Cl0.0569 (8)0.0751 (9)0.0425 (7)0.0079 (6)0.0004 (5)0.0024 (6)
C10.045 (3)0.054 (3)0.053 (3)0.001 (2)0.002 (2)0.015 (2)
C20.045 (3)0.075 (4)0.047 (3)0.006 (3)0.006 (2)0.010 (3)
C30.037 (3)0.075 (4)0.058 (3)0.001 (3)0.009 (2)0.002 (3)
C40.042 (3)0.049 (3)0.065 (3)0.007 (2)0.005 (2)0.002 (2)
C50.035 (2)0.037 (2)0.043 (2)0.0018 (19)0.0015 (18)0.0041 (19)
C60.038 (2)0.036 (2)0.047 (3)0.0022 (19)0.002 (2)0.003 (2)
C70.052 (3)0.051 (3)0.073 (4)0.016 (2)0.008 (3)0.009 (3)
C80.061 (3)0.060 (3)0.074 (4)0.015 (3)0.004 (3)0.024 (3)
C90.063 (3)0.053 (3)0.052 (3)0.003 (3)0.001 (2)0.013 (2)
C100.048 (3)0.048 (3)0.049 (3)0.004 (2)0.007 (2)0.003 (2)
C110.030 (2)0.035 (2)0.050 (3)0.0021 (18)0.0010 (18)0.0027 (19)
C120.056 (3)0.041 (3)0.062 (3)0.001 (2)0.002 (2)0.002 (2)
C130.063 (3)0.048 (3)0.056 (3)0.011 (2)0.001 (3)0.011 (2)
C140.050 (3)0.061 (3)0.046 (3)0.011 (2)0.010 (2)0.007 (2)
C150.045 (3)0.049 (3)0.053 (3)0.002 (2)0.009 (2)0.002 (2)
N10.039 (2)0.042 (2)0.040 (2)0.0018 (16)0.0025 (16)0.0006 (16)
N20.042 (2)0.0343 (19)0.040 (2)0.0001 (16)0.0007 (16)0.0001 (16)
N30.0333 (19)0.040 (2)0.042 (2)0.0026 (16)0.0037 (15)0.0003 (16)
O10.169 (6)0.175 (6)0.093 (4)0.052 (5)0.011 (4)0.063 (4)
O20.090 (4)0.109 (4)0.193 (6)0.010 (3)0.028 (4)0.027 (4)
O30.068 (3)0.123 (4)0.142 (5)0.032 (3)0.011 (3)0.010 (4)
O40.092 (3)0.198 (6)0.085 (3)0.004 (4)0.008 (3)0.073 (4)
Geometric parameters (Å, º) top
Ni—N32.071 (3)C6—N21.345 (5)
Ni—N3i2.071 (3)C6—C71.380 (6)
Ni—N22.085 (3)C7—C81.368 (7)
Ni—N2i2.085 (3)C7—H70.9300
Ni—N12.090 (3)C8—C91.360 (7)
Ni—N1i2.090 (3)C8—H80.9300
Cl—O41.373 (4)C9—C101.370 (6)
Cl—O11.381 (5)C9—H90.9300
Cl—O31.417 (4)C10—N21.343 (6)
Cl—O21.429 (5)C10—H100.9300
C1—N11.342 (6)C11—N31.347 (5)
C1—C21.369 (6)C11—C121.384 (6)
C1—H10.9300C11—C11i1.479 (8)
C2—C31.359 (7)C12—C131.371 (7)
C2—H20.9300C12—H120.9300
C3—C41.368 (7)C13—C141.375 (7)
C3—H30.9300C13—H130.9300
C4—C51.382 (6)C14—C151.369 (6)
C4—H40.9300C14—H140.9300
C5—N11.348 (5)C15—N31.350 (6)
C5—C61.482 (6)C15—H150.9300
N3—Ni—N3i79.11 (19)C6—C7—H7120.3
N3—Ni—N2172.13 (14)C9—C8—C7119.8 (5)
N3i—Ni—N297.08 (13)C9—C8—H8120.1
N2—Ni—N2i87.50 (19)C7—C8—H8120.1
N3—Ni—N194.71 (14)C8—C9—C10118.7 (5)
N3i—Ni—N192.96 (14)C8—C9—H9120.7
N2—Ni—N178.53 (14)C10—C9—H9120.7
N2i—Ni—N194.22 (14)N2—C10—C9122.7 (4)
N1—Ni—N1i170.06 (19)N2—C10—H10118.7
O4—Cl—O1110.6 (4)C9—C10—H10118.7
O4—Cl—O3110.3 (3)N3—C11—C12121.4 (4)
O1—Cl—O3109.4 (4)N3—C11—C11i115.1 (2)
O4—Cl—O2108.3 (4)C12—C11—C11i123.5 (3)
O1—Cl—O2107.8 (4)C13—C12—C11119.2 (5)
O3—Cl—O2110.4 (3)C13—C12—H12120.4
N1—C1—C2122.5 (5)C11—C12—H12120.4
N1—C1—H1118.8C12—C13—C14119.8 (5)
C2—C1—H1118.8C12—C13—H13120.1
C3—C2—C1119.1 (5)C14—C13—H13120.1
C3—C2—H2120.4C15—C14—C13118.5 (4)
C1—C2—H2120.4C15—C14—H14120.7
C2—C3—C4119.3 (5)C13—C14—H14120.7
C2—C3—H3120.3N3—C15—C14122.6 (4)
C4—C3—H3120.3N3—C15—H15118.7
C3—C4—C5119.8 (5)C14—C15—H15118.7
C3—C4—H4120.1C1—N1—C5118.5 (4)
C5—C4—H4120.1C1—N1—Ni126.4 (3)
N1—C5—C4120.8 (4)C5—N1—Ni114.5 (3)
N1—C5—C6115.3 (4)C10—N2—C6118.3 (4)
C4—C5—C6123.9 (4)C10—N2—Ni126.7 (3)
N2—C6—C7121.3 (4)C6—N2—Ni115.0 (3)
N2—C6—C5115.6 (4)C11—N3—C15118.4 (4)
C7—C6—C5123.1 (4)C11—N3—Ni114.7 (3)
C8—C7—C6119.4 (5)C15—N3—Ni126.2 (3)
C8—C7—H7120.3
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C10H8N2)3](ClO4)2
Mr726.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.502 (2), 10.777 (1), 16.092 (2)
β (°) 90.959 (2)
V3)3034.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.46 × 0.34 × 0.26
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.621, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
4475, 2637, 2026
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.142, 1.08
No. of reflections2637
No. of parameters213
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0464P)2 + 12.8239P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.40, 0.37

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1994), SHELXTL (Siemens, 1994), SHELXL97 (Sheldrick, 1997), PLUTON (Spek, 2003) and ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ni—N32.071 (3)C1—N11.342 (6)
Ni—N22.085 (3)C5—N11.348 (5)
Ni—N12.090 (3)C6—N21.345 (5)
Cl—O41.373 (4)C10—N21.343 (6)
Cl—O11.381 (5)C11—N31.347 (5)
Cl—O31.417 (4)C15—N31.350 (6)
Cl—O21.429 (5)
N3—Ni—N3i79.11 (19)N3i—Ni—N192.96 (14)
N3—Ni—N2172.13 (14)N2—Ni—N178.53 (14)
N3i—Ni—N297.08 (13)N2i—Ni—N194.22 (14)
N2—Ni—N2i87.50 (19)N1—Ni—N1i170.06 (19)
N3—Ni—N194.71 (14)
Symmetry code: (i) x+1, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds