Download citation
Download citation
link to html
The crystal structure of 1-methyl­ethyl 2-[4-(4-chloro­benzoyl)­phenoxy]-2-methyl­propanoate, also known as fenofibrate, C20H21ClO4, has been determined and is presented here. The compound crystallizes in space group P\overline 1 and is notable for its lack of hydrogen-bond donors and thus a lack of hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803008274/fl6029sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803008274/fl6029Isup2.hkl
Contains datablock I

CCDC reference: 214632

Key indicators

  • Single-crystal X-ray study
  • T = 193 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.052
  • wR factor = 0.147
  • Data-to-parameter ratio = 18.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.27 From the CIF: _reflns_number_total 4225 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 4622 Completeness (_total/calc) 91.41% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Fenofibrate belongs to a class of compounds, fibric acid derivatives, which are used to treat hypercholesterolemia or mixed dyslipidemia (Kloer 1987). The physicochemical properties of fenofibrate, that include solubility, hygroscopicity, distribution coefficient, and solid-state characterization, have been studied in detail (Shoji et al., 1995). Recently, a metastable polymorph was reported (DiMartino et al.. 2000), in which the original polymorph and the newly discovered polymorph were designated Forms I and II, respectively. In this paper, we report the molecular structure of fenofibrate Form I.

Fenofibrate Form I (see Scheme) crystallizes in the centrosymmetric triclinic space group P1. The molecule lacks hydrogen bond donating groups making it impossible for the structure to contain any type of hydrogen bonding. In the absence of hydrogen-bonding interactions, the molecules have arranged themselves head-to-head and tail-to-tail producing aliphatic and aromatic layers. These layers are perpendicular to the c axis. An interesting feature of the conformation of the molecule is the symmetrical nature of the isopropyl ester. A survey of the CCDC (Allen 2002) found 115 structures containing isopropyl esters. These 115 structures contained a total of 171 isopropyl ester fragments. The symmetry of the isopropyl ester was measured as the torsion angle between the carbonyl carbon, esteric sp3 oxygen, isopropyl methine carbon and the centroid of the two methyl groups. Values near zero or 180° would indicate a highly symmetric orientation of the isopropyl group. In this orientation, the isopropyl group's bisecting mirror plane coincides with the plane of the two O atoms and one carbon of the carbonyl group. The mean value found for this torsion angle was 150.7°. The value nearest 180° was 174.6° (Newkome et al., 1985). The corresponding torsion angle in fenofibrate is 178.0°, making it the most symmetric crystallographically characterized isopropyl ester

Experimental top

Crystals were grown by slow evaporation from an ethanol solution.

Refinement top

Molecule crystallized in the triclinic system; space group P1. H atoms were treated as riding atoms (C—H = 0.93 and 0.97 Å). Uiso values for H atoms were fixed at 1.2 times Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. A view of fenofibrate with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
1-methylethyl 2-[4-(4-chlorobenzoyl)phenoxy]-2-methylpropanoate top
Crystal data top
C20H21ClO4F(000) = 380
Mr = 360.82Dx = 1.285 Mg m3
Triclinic, P1Melting point = 80–81 K
a = 8.1605 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2664 (16) ÅCell parameters from 6105 reflections
c = 14.511 (3) Åθ = 2.5–28.3°
α = 93.951 (3)°µ = 0.23 mm1
β = 105.664 (3)°T = 193 K
γ = 96.002 (3)°Parallelepiped, colourless
V = 932.5 (3) Å30.4 × 0.4 × 0.4 mm
Z = 2
Data collection top
Bruker SMART Apex CCD
diffractometer
3694 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
Graphite monochromatorθmax = 28.3°, θmin = 2.5°
ω scansh = 910
6105 measured reflectionsk = 1010
4225 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1706P)2 + 0.7796P]
where P = (Fo2 + 2Fc2)/3
4225 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C20H21ClO4γ = 96.002 (3)°
Mr = 360.82V = 932.5 (3) Å3
Triclinic, P1Z = 2
a = 8.1605 (16) ÅMo Kα radiation
b = 8.2664 (16) ŵ = 0.23 mm1
c = 14.511 (3) ÅT = 193 K
α = 93.951 (3)°0.4 × 0.4 × 0.4 mm
β = 105.664 (3)°
Data collection top
Bruker SMART Apex CCD
diffractometer
3694 reflections with I > 2σ(I)
6105 measured reflectionsRint = 0.065
4225 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
4225 reflectionsΔρmin = 0.34 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.56390 (7)0.29037 (8)0.42848 (4)0.0691 (2)
O31.84131 (12)0.41642 (12)0.83905 (8)0.0326 (2)
O11.78245 (16)0.68641 (14)0.93170 (8)0.0408 (3)
O41.16190 (15)0.07372 (13)0.71558 (9)0.0411 (3)
O21.78000 (19)0.82642 (14)0.80542 (10)0.0498 (3)
C11.18172 (19)0.06097 (17)0.68797 (10)0.0320 (3)
C21.67663 (17)0.34356 (16)0.79862 (10)0.0284 (3)
C31.53632 (18)0.42282 (16)0.75832 (11)0.0314 (3)
H31.54990.53560.75650.038*
C41.65445 (19)0.17488 (17)0.80155 (11)0.0318 (3)
H41.74810.12180.82900.038*
C50.9039 (2)0.2710 (2)0.48911 (11)0.0411 (4)
H50.91380.33490.44010.049*
C61.37547 (18)0.33229 (17)0.72069 (11)0.0320 (3)
H61.28160.38560.69400.038*
C151.81198 (17)0.71001 (16)0.84840 (10)0.0294 (3)
C71.0477 (2)0.22088 (19)0.54899 (11)0.0365 (3)
H71.15520.25190.54060.044*
C81.03302 (19)0.12374 (17)0.62217 (10)0.0322 (3)
C91.35218 (18)0.16340 (17)0.72222 (10)0.0299 (3)
C100.8701 (2)0.07593 (19)0.63247 (11)0.0374 (3)
H100.85840.00830.67950.045*
C161.89999 (18)0.57282 (16)0.81342 (11)0.0310 (3)
C111.49490 (19)0.08644 (16)0.76405 (11)0.0328 (3)
H111.48170.02620.76650.039*
C121.8796 (2)0.56876 (19)0.70608 (12)0.0403 (4)
H12A1.93700.48260.68640.060*
H12B1.92900.67160.69220.060*
H12C1.75990.54950.67180.060*
C130.7452 (2)0.2253 (2)0.50278 (12)0.0421 (4)
C140.7265 (2)0.1278 (2)0.57366 (12)0.0425 (4)
H140.61860.09760.58170.051*
C172.0889 (2)0.6045 (2)0.87061 (15)0.0440 (4)
H17A2.09850.60380.93800.066*
H17B2.13810.70900.85890.066*
H17C2.14890.52060.85090.066*
C181.7095 (2)0.8146 (2)0.97655 (12)0.0446 (4)
H181.68660.90260.93470.054*
C191.8357 (3)0.8783 (3)1.06991 (17)0.0686 (6)
H19A1.85650.79101.11020.103*
H19B1.79090.96241.10120.103*
H19C1.94130.92281.05870.103*
C201.5459 (3)0.7347 (5)0.9905 (3)0.1158 (15)
H20A1.46660.69710.92890.174*
H20B1.49720.81231.02400.174*
H20C1.56910.64361.02740.174*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0578 (3)0.0836 (4)0.0622 (3)0.0194 (3)0.0023 (2)0.0244 (3)
O30.0290 (5)0.0236 (5)0.0446 (6)0.0027 (4)0.0087 (4)0.0058 (4)
O10.0557 (7)0.0389 (6)0.0340 (5)0.0203 (5)0.0167 (5)0.0070 (4)
O40.0435 (6)0.0311 (6)0.0460 (6)0.0064 (4)0.0113 (5)0.0067 (5)
O20.0734 (9)0.0330 (6)0.0600 (8)0.0217 (6)0.0383 (7)0.0177 (5)
C10.0381 (7)0.0281 (7)0.0302 (7)0.0029 (5)0.0140 (6)0.0007 (5)
C20.0298 (6)0.0243 (6)0.0325 (7)0.0016 (5)0.0120 (5)0.0024 (5)
C30.0338 (7)0.0211 (6)0.0387 (7)0.0026 (5)0.0095 (6)0.0034 (5)
C40.0352 (7)0.0245 (6)0.0389 (7)0.0065 (5)0.0140 (6)0.0059 (5)
C50.0545 (9)0.0375 (8)0.0293 (7)0.0017 (7)0.0112 (7)0.0034 (6)
C60.0319 (7)0.0274 (7)0.0361 (7)0.0034 (5)0.0089 (6)0.0026 (5)
C150.0283 (6)0.0244 (6)0.0356 (7)0.0017 (5)0.0100 (5)0.0014 (5)
C70.0430 (8)0.0356 (7)0.0308 (7)0.0059 (6)0.0149 (6)0.0002 (6)
C80.0377 (7)0.0289 (7)0.0285 (7)0.0038 (5)0.0111 (6)0.0023 (5)
C90.0336 (7)0.0269 (6)0.0301 (6)0.0011 (5)0.0129 (5)0.0001 (5)
C100.0402 (8)0.0372 (8)0.0348 (7)0.0040 (6)0.0136 (6)0.0043 (6)
C160.0299 (7)0.0230 (6)0.0419 (8)0.0019 (5)0.0138 (6)0.0029 (5)
C110.0403 (8)0.0215 (6)0.0384 (7)0.0012 (5)0.0154 (6)0.0036 (5)
C120.0492 (9)0.0320 (7)0.0462 (9)0.0025 (6)0.0258 (7)0.0020 (6)
C130.0451 (9)0.0427 (8)0.0347 (8)0.0047 (7)0.0055 (6)0.0017 (6)
C140.0374 (8)0.0480 (9)0.0415 (8)0.0007 (7)0.0122 (7)0.0045 (7)
C170.0288 (7)0.0337 (8)0.0681 (11)0.0024 (6)0.0120 (7)0.0037 (7)
C180.0576 (10)0.0443 (9)0.0379 (8)0.0223 (8)0.0181 (7)0.0020 (7)
C190.0758 (15)0.0636 (13)0.0610 (13)0.0036 (11)0.0181 (11)0.0182 (10)
C200.0498 (13)0.131 (3)0.157 (3)0.0084 (15)0.0428 (17)0.080 (3)
Geometric parameters (Å, º) top
Cl1—C131.7397 (18)C9—C111.399 (2)
O3—C21.3672 (17)C10—C141.379 (2)
O3—C161.4395 (16)C10—H100.9300
O1—C151.3181 (18)C16—C121.519 (2)
O1—C181.4651 (18)C16—C171.526 (2)
O4—C11.2187 (18)C11—H110.9300
O2—C151.1960 (18)C12—H12A0.9600
C1—C91.490 (2)C12—H12B0.9600
C1—C81.493 (2)C12—H12C0.9600
C2—C31.3894 (19)C13—C141.379 (2)
C2—C41.3922 (19)C14—H140.9300
C3—C61.390 (2)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C111.375 (2)C17—H17C0.9600
C4—H40.9300C18—C191.486 (3)
C5—C71.380 (2)C18—C201.496 (4)
C5—C131.381 (3)C18—H180.9800
C5—H50.9300C19—H19A0.9600
C6—C91.3917 (19)C19—H19B0.9600
C6—H60.9300C19—H19C0.9600
C15—C161.5322 (18)C20—H20A0.9600
C7—C81.397 (2)C20—H20B0.9600
C7—H70.9300C20—H20C0.9600
C8—C101.397 (2)
C2—O3—C16121.03 (11)C17—C16—C15106.81 (12)
C15—O1—C18117.62 (12)C4—C11—C9120.92 (13)
O4—C1—C9119.93 (14)C4—C11—H11119.5
O4—C1—C8119.46 (13)C9—C11—H11119.5
C9—C1—C8120.58 (12)C16—C12—H12A109.5
O3—C2—C3125.97 (12)C16—C12—H12B109.5
O3—C2—C4114.29 (12)H12A—C12—H12B109.5
C3—C2—C4119.73 (13)C16—C12—H12C109.5
C2—C3—C6119.49 (13)H12A—C12—H12C109.5
C2—C3—H3120.3H12B—C12—H12C109.5
C6—C3—H3120.3C14—C13—C5121.57 (16)
C11—C4—C2120.33 (13)C14—C13—Cl1119.01 (14)
C11—C4—H4119.8C5—C13—Cl1119.42 (13)
C2—C4—H4119.8C10—C14—C13119.05 (15)
C7—C5—C13119.23 (15)C10—C14—H14120.5
C7—C5—H5120.4C13—C14—H14120.5
C13—C5—H5120.4C16—C17—H17A109.5
C3—C6—C9121.26 (13)C16—C17—H17B109.5
C3—C6—H6119.4H17A—C17—H17B109.5
C9—C6—H6119.4C16—C17—H17C109.5
O2—C15—O1124.98 (13)H17A—C17—H17C109.5
O2—C15—C16122.90 (13)H17B—C17—H17C109.5
O1—C15—C16112.08 (12)O1—C18—C19107.64 (15)
C5—C7—C8120.50 (15)O1—C18—C20106.31 (17)
C5—C7—H7119.8C19—C18—C20111.6 (2)
C8—C7—H7119.8O1—C18—H18110.4
C10—C8—C7118.85 (14)C19—C18—H18110.4
C10—C8—C1117.49 (13)C20—C18—H18110.4
C7—C8—C1123.60 (14)C18—C19—H19A109.5
C6—C9—C11118.25 (13)C18—C19—H19B109.5
C6—C9—C1123.73 (13)H19A—C19—H19B109.5
C11—C9—C1117.88 (13)C18—C19—H19C109.5
C14—C10—C8120.77 (14)H19A—C19—H19C109.5
C14—C10—H10119.6H19B—C19—H19C109.5
C8—C10—H10119.6C18—C20—H20A109.5
O3—C16—C12111.55 (12)C18—C20—H20B109.5
O3—C16—C17103.88 (11)H20A—C20—H20B109.5
C12—C16—C17111.06 (13)C18—C20—H20C109.5
O3—C16—C15111.82 (11)H20A—C20—H20C109.5
C12—C16—C15111.38 (12)H20B—C20—H20C109.5
C16—O3—C2—C323.4 (2)C7—C8—C10—C142.1 (2)
C16—O3—C2—C4157.78 (12)C1—C8—C10—C14179.40 (14)
O3—C2—C3—C6179.30 (13)C2—O3—C16—C1257.95 (16)
C4—C2—C3—C60.5 (2)C2—O3—C16—C17177.66 (12)
O3—C2—C4—C11179.51 (13)C2—O3—C16—C1567.52 (16)
C3—C2—C4—C110.6 (2)O2—C15—C16—O3146.98 (15)
C2—C3—C6—C90.3 (2)O1—C15—C16—O335.23 (16)
C18—O1—C15—O21.9 (2)O2—C15—C16—C1221.4 (2)
C18—O1—C15—C16175.86 (13)O1—C15—C16—C12160.80 (13)
C13—C5—C7—C80.5 (2)O2—C15—C16—C17100.00 (18)
C5—C7—C8—C101.2 (2)O1—C15—C16—C1777.78 (15)
C5—C7—C8—C1178.26 (13)C2—C4—C11—C90.1 (2)
O4—C1—C8—C1032.2 (2)C6—C9—C11—C40.8 (2)
C9—C1—C8—C10146.02 (14)C1—C9—C11—C4176.69 (13)
O4—C1—C8—C7144.93 (15)C7—C5—C13—C141.3 (3)
C9—C1—C8—C736.9 (2)C7—C5—C13—Cl1179.17 (12)
C3—C6—C9—C110.9 (2)C8—C10—C14—C131.4 (2)
C3—C6—C9—C1176.51 (13)C5—C13—C14—C100.4 (3)
O4—C1—C9—C6158.87 (14)Cl1—C13—C14—C10179.89 (13)
C8—C1—C9—C619.3 (2)C15—O1—C18—C19117.82 (18)
O4—C1—C9—C1116.7 (2)C15—O1—C18—C20122.5 (2)
C8—C1—C9—C11165.05 (13)

Experimental details

Crystal data
Chemical formulaC20H21ClO4
Mr360.82
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)8.1605 (16), 8.2664 (16), 14.511 (3)
α, β, γ (°)93.951 (3), 105.664 (3), 96.002 (3)
V3)932.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.4 × 0.4 × 0.4
Data collection
DiffractometerBruker SMART Apex CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6105, 4225, 3694
Rint0.065
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.147, 1.06
No. of reflections4225
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SAINT-Plus (Bruker 1999), SHELXTL (Sheldrick, 2000), SHELXTL, ORTEPII (Johnson, 1976).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds