Download citation
Download citation
link to html
The crystal packing in the title compound, C20H15ClN2OS, shows sheets of mol­ecules stacked along [001].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007992/na6220sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007992/na6220Isup2.hkl
Contains datablock I

CCDC reference: 214610

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.041
  • wR factor = 0.122
  • Data-to-parameter ratio = 18.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Recently, we discussed a novel series of thiourea derivatives and their metal complexes (Arslan et al., 2003). One of these new derivatives is the here reported title compound, (I).

The bond lengths and angles in the thiourea moiety are typical for thiourea derivatives, i.e. C8—S1 and C7—O1 bonds show both typical double-bond character. However, the C—N bond lengths C7—N1, C8—N1 and C8—N2 are shorter than the normal C—N single-bond length of about 1.48 Å. The shortening of these C—N bonds reveal the effects of resonance in this part of the molecule. All other bond lengths fall within the expected range; the terminal C3—Cl1 bond is 1.735 (2) Å. The conformation of the molecule with respect to the thiocarbonyl and carbonyl moieties is twisted as reflected by the torsion angles O1—C7—N1—C8 and C7—N1—C8—N2 of 4.9 (3) and 49.8 (3)°, respectively. Intermolecular hydrogen-bonding D—H.·A parameters are: N1—H1A···S1(-x + 1, −y + 2, −z + 1) with H···A = 2.48 Å and a D—H.·A angle of 153°; C2—H2A···O1(x + 1, y, z) with H···A = 2.32 Å and a D—H.·A angle of 133°; a weak interaction C12—H12A···O1(-x, −y + 2, −z + 2) with H···A = 2.68 Å and a D—H.·A angle of 160° (values normalized for N—H = 1.03 and C—H = 1.08 Å). Accordingly, molecules are packed in parallel sheets along [001].

Experimental top

The title compound was prepared according to the method of Arslan et al. (2003) by converting 4-chlorobenzoyl chloride into 4-chloro isothiocyanate [please provide the full name here, is it 4-chlorobenzoyl isothiocyanate?] and then condensing with the appropriate secondary amine. The compound was recrystallized from ethanol/dichloromethane (1:1).

Refinement top

H atoms were refined at calculated positions riding on the C atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram, viewed along [100]. Hydrogen bonding is indicated by dashed lines.
N'-(4-Chlorobenzoyl)-N,N-diphenylthiourea top
Crystal data top
C20H15ClN2OSZ = 2
Mr = 366.85F(000) = 380
Triclinic, P1Dx = 1.363 Mg m3
a = 6.811 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.950 (1) ÅCell parameters from 26 reflections
c = 13.442 (2) Åθ = 7.5–18.6°
α = 88.14 (1)°µ = 0.34 mm1
β = 79.12 (2)°T = 293 K
γ = 89.54 (1)°Prism, pale yellow
V = 894.1 (3) Å30.38 × 0.25 × 0.14 mm
Data collection top
Bruker P4
diffractometer
2774 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ω scansh = 18
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.811, Tmax = 0.946l = 1717
5122 measured reflections3 standard reflections every 397 reflections
4095 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.3889P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4095 reflectionsΔρmax = 0.33 e Å3
227 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C20H15ClN2OSγ = 89.54 (1)°
Mr = 366.85V = 894.1 (3) Å3
Triclinic, P1Z = 2
a = 6.811 (2) ÅMo Kα radiation
b = 9.950 (1) ŵ = 0.34 mm1
c = 13.442 (2) ÅT = 293 K
α = 88.14 (1)°0.38 × 0.25 × 0.14 mm
β = 79.12 (2)°
Data collection top
Bruker P4
diffractometer
2774 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.811, Tmax = 0.9463 standard reflections every 397 reflections
5122 measured reflections intensity decay: <1%
4095 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
4095 reflectionsΔρmin = 0.25 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.67643 (11)0.47923 (8)0.88792 (5)0.0729 (3)
S10.25792 (10)1.13391 (6)0.47986 (4)0.04738 (18)
O10.0084 (2)0.89838 (16)0.73884 (13)0.0501 (4)
N10.2933 (3)0.98879 (17)0.64473 (13)0.0396 (4)
H1A0.42010.97750.62610.047*
N20.0871 (3)1.17658 (17)0.67074 (12)0.0390 (4)
C10.5091 (3)0.8203 (2)0.76573 (16)0.0426 (5)
H1B0.56580.90350.74440.051*
C20.6187 (4)0.7239 (3)0.80842 (17)0.0492 (6)
H2A0.74880.74210.81590.059*
C30.5335 (4)0.6012 (2)0.83954 (16)0.0466 (5)
C40.3408 (4)0.5725 (2)0.83064 (18)0.0506 (6)
H4A0.28460.48940.85270.061*
C50.2315 (4)0.6689 (2)0.78835 (17)0.0446 (5)
H5A0.10070.65060.78230.054*
C60.3154 (3)0.79303 (19)0.75479 (15)0.0362 (4)
C70.1890 (3)0.8953 (2)0.71348 (15)0.0381 (5)
C80.2062 (3)1.09956 (19)0.60398 (15)0.0371 (5)
C90.0873 (4)1.1734 (2)0.77834 (15)0.0418 (5)
C100.0919 (4)1.1638 (3)0.84553 (17)0.0538 (6)
H10A0.21081.15500.82180.065*
C110.0941 (5)1.1672 (3)0.94835 (19)0.0685 (8)
H11A0.21511.16210.99390.082*
C120.0813 (6)1.1782 (3)0.9839 (2)0.0734 (9)
H12A0.07951.17801.05320.088*
C130.2573 (5)1.1895 (3)0.9170 (2)0.0700 (8)
H13A0.37561.19810.94120.084*
C140.2638 (4)1.1884 (2)0.81301 (18)0.0529 (6)
H14A0.38471.19750.76770.063*
C150.0397 (3)1.2783 (2)0.63622 (14)0.0373 (5)
C160.2060 (4)1.2421 (2)0.60088 (19)0.0523 (6)
H16A0.23371.15190.59370.063*
C170.3338 (4)1.3421 (3)0.5757 (2)0.0651 (7)
H17A0.44821.31880.55200.078*
C180.2913 (4)1.4752 (3)0.5858 (2)0.0611 (7)
H18A0.37791.54160.56970.073*
C190.1227 (4)1.5100 (2)0.61939 (18)0.0539 (6)
H19A0.09341.60040.62480.065*
C200.0053 (4)1.4121 (2)0.64556 (16)0.0449 (5)
H20A0.11991.43590.66910.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0698 (5)0.0776 (5)0.0652 (4)0.0324 (4)0.0035 (3)0.0261 (3)
S10.0623 (4)0.0435 (3)0.0329 (3)0.0149 (3)0.0015 (2)0.0033 (2)
O10.0404 (9)0.0436 (9)0.0651 (10)0.0025 (7)0.0088 (8)0.0096 (7)
N10.0418 (10)0.0355 (9)0.0379 (9)0.0076 (8)0.0002 (7)0.0062 (7)
N20.0489 (11)0.0356 (9)0.0316 (8)0.0117 (8)0.0059 (8)0.0013 (7)
C10.0441 (12)0.0408 (11)0.0409 (11)0.0032 (10)0.0042 (9)0.0062 (9)
C20.0411 (12)0.0610 (14)0.0454 (12)0.0031 (11)0.0094 (10)0.0060 (10)
C30.0498 (13)0.0495 (13)0.0380 (11)0.0157 (11)0.0044 (10)0.0092 (9)
C40.0594 (15)0.0336 (11)0.0561 (14)0.0033 (10)0.0057 (12)0.0088 (10)
C50.0451 (13)0.0342 (11)0.0550 (13)0.0003 (9)0.0112 (10)0.0017 (9)
C60.0430 (12)0.0316 (10)0.0330 (10)0.0036 (9)0.0050 (8)0.0000 (8)
C70.0446 (12)0.0318 (10)0.0377 (10)0.0015 (9)0.0070 (9)0.0016 (8)
C80.0451 (12)0.0299 (9)0.0347 (10)0.0035 (9)0.0043 (9)0.0004 (8)
C90.0610 (14)0.0330 (10)0.0308 (10)0.0113 (10)0.0082 (9)0.0006 (8)
C100.0603 (15)0.0585 (14)0.0393 (12)0.0144 (12)0.0019 (11)0.0013 (10)
C110.085 (2)0.0738 (18)0.0395 (13)0.0204 (16)0.0050 (13)0.0037 (12)
C120.112 (3)0.0730 (19)0.0368 (13)0.0146 (18)0.0171 (16)0.0048 (12)
C130.097 (2)0.0689 (18)0.0514 (15)0.0032 (17)0.0318 (16)0.0027 (13)
C140.0619 (16)0.0520 (14)0.0454 (13)0.0019 (12)0.0121 (11)0.0001 (10)
C150.0457 (12)0.0339 (10)0.0309 (9)0.0106 (9)0.0044 (8)0.0006 (8)
C160.0558 (15)0.0440 (12)0.0587 (14)0.0017 (11)0.0160 (12)0.0043 (11)
C170.0529 (16)0.0743 (19)0.0716 (18)0.0037 (14)0.0230 (14)0.0130 (14)
C180.0676 (18)0.0569 (15)0.0562 (15)0.0257 (14)0.0080 (13)0.0114 (12)
C190.0765 (18)0.0386 (12)0.0447 (12)0.0164 (12)0.0073 (12)0.0007 (10)
C200.0555 (14)0.0388 (11)0.0409 (11)0.0088 (10)0.0105 (10)0.0019 (9)
Geometric parameters (Å, º) top
Cl1—C31.735 (2)C9—C141.380 (3)
S1—C81.664 (2)C10—C111.381 (3)
O1—C71.213 (3)C10—H10A0.9300
N1—C71.389 (3)C11—C121.374 (4)
N1—C81.393 (2)C11—H11A0.9300
N1—H1A0.8600C12—C131.359 (5)
N2—C81.346 (3)C12—H12A0.9300
N2—C91.446 (3)C13—C141.391 (3)
N2—C151.447 (2)C13—H13A0.9300
C1—C61.385 (3)C14—H14A0.9300
C1—C21.386 (3)C15—C161.364 (3)
C1—H1B0.9300C15—C201.384 (3)
C2—C31.375 (3)C16—C171.391 (3)
C2—H2A0.9300C16—H16A0.9300
C3—C41.374 (3)C17—C181.374 (4)
C4—C51.382 (3)C17—H17A0.9300
C4—H4A0.9300C18—C191.362 (4)
C5—C61.390 (3)C18—H18A0.9300
C5—H5A0.9300C19—C201.383 (3)
C6—C71.489 (3)C19—H19A0.9300
C9—C101.377 (3)C20—H20A0.9300
C7—N1—C8124.4 (2)C9—C10—C11119.6 (3)
C7—N1—H1A117.8C9—C10—H10A120.2
C8—N1—H1A117.8C11—C10—H10A120.2
C8—N2—C9123.9 (2)C12—C11—C10120.5 (3)
C8—N2—C15120.6 (2)C12—C11—H11A119.8
C9—N2—C15115.2 (2)C10—C11—H11A119.8
C6—C1—C2120.2 (2)C13—C12—C11119.6 (3)
C6—C1—H1B119.9C13—C12—H12A120.2
C2—C1—H1B119.9C11—C12—H12A120.2
C3—C2—C1119.4 (2)C12—C13—C14121.2 (3)
C3—C2—H2A120.3C12—C13—H13A119.4
C1—C2—H2A120.3C14—C13—H13A119.4
C4—C3—C2121.5 (2)C9—C14—C13118.7 (3)
C4—C3—Cl1119.8 (2)C9—C14—H14A120.7
C2—C3—Cl1118.8 (2)C13—C14—H14A120.7
C3—C4—C5119.0 (2)C16—C15—C20121.1 (2)
C3—C4—H4A120.5C16—C15—N2120.3 (2)
C5—C4—H4A120.5C20—C15—N2118.5 (2)
C4—C5—C6120.6 (2)C15—C16—C17119.0 (2)
C4—C5—H5A119.7C15—C16—H16A120.5
C6—C5—H5A119.7C17—C16—H16A120.5
C1—C6—C5119.3 (2)C18—C17—C16120.2 (3)
C1—C6—C7122.1 (2)C18—C17—H17A119.9
C5—C6—C7118.5 (2)C16—C17—H17A119.9
O1—C7—N1122.3 (2)C19—C18—C17120.2 (2)
O1—C7—C6122.7 (2)C19—C18—H18A119.9
N1—C7—C6115.0 (2)C17—C18—H18A119.9
N2—C8—N1116.1 (2)C18—C19—C20120.5 (2)
N2—C8—S1123.6 (2)C18—C19—H19A119.8
N1—C8—S1120.3 (2)C20—C19—H19A119.8
C10—C9—C14120.5 (2)C19—C20—C15118.9 (2)
C10—C9—N2119.1 (2)C19—C20—H20A120.5
C14—C9—N2120.3 (2)C15—C20—H20A120.5
C6—C1—C2—C30.1 (3)C15—N2—C9—C1053.6 (3)
C1—C2—C3—C41.0 (4)C8—N2—C9—C1452.5 (3)
C1—C2—C3—Cl1177.3 (2)C15—N2—C9—C14122.3 (2)
C2—C3—C4—C50.7 (4)C14—C9—C10—C110.9 (4)
Cl1—C3—C4—C5177.5 (2)N2—C9—C10—C11176.9 (2)
C3—C4—C5—C60.3 (4)C9—C10—C11—C120.9 (4)
C2—C1—C6—C50.9 (3)C10—C11—C12—C131.8 (5)
C2—C1—C6—C7177.3 (2)C11—C12—C13—C140.8 (5)
C4—C5—C6—C11.1 (3)C10—C9—C14—C131.9 (4)
C4—C5—C6—C7177.7 (2)N2—C9—C14—C13177.8 (2)
C8—N1—C7—O14.9 (3)C12—C13—C14—C91.0 (4)
C8—N1—C7—C6174.1 (2)C8—N2—C15—C1673.0 (3)
C1—C6—C7—O1149.4 (2)C9—N2—C15—C16112.1 (2)
C5—C6—C7—O127.0 (3)C8—N2—C15—C20110.8 (2)
C1—C6—C7—N129.6 (3)C9—N2—C15—C2064.2 (3)
C5—C6—C7—N1153.9 (2)C20—C15—C16—C171.2 (4)
C9—N2—C8—N117.2 (3)N2—C15—C16—C17175.0 (2)
C15—N2—C8—N1168.3 (2)C15—C16—C17—C180.4 (4)
C9—N2—C8—S1160.5 (2)C16—C17—C18—C190.8 (4)
C15—N2—C8—S114.0 (3)C17—C18—C19—C201.3 (4)
C7—N1—C8—N249.8 (3)C18—C19—C20—C150.6 (3)
C7—N1—C8—S1132.4 (2)C16—C15—C20—C190.7 (3)
C8—N2—C9—C10131.6 (2)N2—C15—C20—C19175.5 (2)

Experimental details

Crystal data
Chemical formulaC20H15ClN2OS
Mr366.85
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.811 (2), 9.950 (1), 13.442 (2)
α, β, γ (°)88.14 (1), 79.12 (2), 89.54 (1)
V3)894.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.38 × 0.25 × 0.14
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.811, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
5122, 4095, 2774
Rint0.016
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 1.08
No. of reflections4095
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Cl1—C31.735 (2)N1—C71.389 (3)
S1—C81.664 (2)N1—C81.393 (2)
O1—C71.213 (3)N2—C81.346 (3)
C7—N1—C8124.4 (2)N2—C8—N1116.1 (2)
O1—C7—N1122.3 (2)N2—C8—S1123.6 (2)
O1—C7—C6122.7 (2)N1—C8—S1120.3 (2)
N1—C7—C6115.0 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds