Download citation
Download citation
link to html
The title compound, C23H27NO4S, is U-shaped, with the phenyl and naphthalene rings almost parallel, having a dihedral angle of 15.34 (13)°. In the crystal structure, a hydrogen-bonded chain-like structure is observed, extending in the a direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803008092/su6018sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803008092/su6018Isup2.hkl
Contains datablock I

CCDC reference: 214635

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.045
  • wR factor = 0.091
  • Data-to-parameter ratio = 18.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
TYPE_089 Alert A _refine_ls_abs_structure_Flack is not of type numb.
Yellow Alert Alert Level C:
GOODF_01 Alert C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.799 PLAT_420 Alert C D-H Without Acceptor N(1) - H(1B) ? General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.53 From the CIF: _reflns_number_total 4879 Count of symmetry unique reflns 2808 Completeness (_total/calc) 173.75% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2071 Fraction of Friedel pairs measured 0.738 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Chiral amino alcohols and their sulfonamides are important ligands in asymmetric synthesis (Itsuno et al., 1885; Corey et al., 1987, 1998; Deloux et al., 1993; Ager et al., 1996; Otsuka et al., 1995; Hu et al., 2001). In some instances, the ligands with two stereo centres usually give better enantioselectivity than ligands with one stereocentre (You et al., 2000, 2001). Recently, we have prepared a series of amino alcohols with two stereocentres using L-valine as the starting material and found that the groups adjacent to the new chiral centres have strongly influenced the enatioselectivity of the reaction (Li et al., 2003). Here we report the preparation and crystal structure of the new chiral sulfonamide (1R,2S)-1-(6-methoxy-2-naphthyl)-3-methyl-2-(p-methylphenylsulfonylamino)- 1-(6-methoxy-2-naphthyl)butan-1-ol, (I).

Fig. 1 shows the structure of compound (I), which is U-shaped with the phenyl and naphthalene rings almost parallel. An intramolecular π-π contact is observed between a ring of the naphthaline group (atoms C3, C4, C5, C10, C11 and C12) and the phenyl ring (atoms C5, C6, C7, C8, C9 and C10). These rings are inclined to one another by an angle of 14.6 (2)°, and the ring centroids are separated by a distance of 3.81 (5) Å. A weak C—H···π contact in C23—H23A···CgB (CgB is the centroid of plane through atoms C5, C6, C7, C8, C9 and C10) is also found, with a distance of 3.49 (5) Å.

In the crystal structure, there are two hydrogen bonds present. One involves the hydroxyl and a sulfonamide O-atom [O1—H1A···O4ii with a D···A distances of 3.033 (3) Å and angle of 149°], and the other involves the amine and the hydroxyl group, N1—H1···O1i, with a D···A distance of 3.343 Å and an angle of 143.9° (see Table 2 for symmetry codes). A hydrogen-bonded polymer chain is formed with the molecules stacking up the a axis (Fig. 2).

Experimental top

A mixture of (R,S)- and (S,S)-2-amino-3-methyl-1-(6-methoxy-2-naphthyl)butan-1-ol were prepared as described in the literature (Reetz et al., 1987), and were used without separation (the ratio of R,S to S,S is about 87 to 13 estimated by 1H NMR analysis). Toluenesulfonyl chloride (0.63 g, 3.3 mmol) and triethylamine (5.0 mmol) were added to the solution of 0.78 g (3.0 mmol) of the amino alcohol in 50 ml of tetrahydrafuran. The mixture was stirred at 273 K for 2 h and then left at room temperature overnight. Water (30 ml) was then added and the organic layers separated. The aqueous layer was extracted with ethyl acetate (3 × 25 ml). The combined organic phase was washed with brine, dried over Na2SO4 and the solvents were removed under reduced pressure. The crude products were purified by flash chromatography and crystallized from dichloromethane and hexane to afford the title compound (0.87 g, 71%).

Refinement top

The absolute configuration of the molecule indicates that atom C1 has an S configuration and atom C2 an R configuration. The Flack (1983) parameter is 0.03 (9). The C-bound H atoms were placed in their geometrically calculated positions and included in the final refinement in the riding-model approximation.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SHELXTL-NT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing viewed down the b axis; dashed lines indicate hydrogen bonding.
(1R,2S)-1-(6-Methoxy-2-naphthyl)-3-methyl-2-(p-methylphenylsulfonylamino)- 1-(6-methoxy-2-naphthyl)butan-1-ol top
Crystal data top
C23H27NO4SDx = 1.293 Mg m3
Mr = 413.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3575 reflections
a = 7.3107 (13) Åθ = 1–27.5°
b = 11.5702 (19) ŵ = 0.18 mm1
c = 25.117 (4) ÅT = 294 K
V = 2124.6 (6) Å3Prism, colourless
Z = 40.32 × 0.28 × 0.24 mm
F(000) = 880
Data collection top
Bruker CCD area-detector
diffractometer
4879 independent reflections
Radiation source: fine-focus sealed tube2113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
h = 99
Tmin = 0.944, Tmax = 0.958k = 1413
14469 measured reflectionsl = 2332
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.03P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.80(Δ/σ)max = 0.001
4879 reflectionsΔρmax = 0.25 e Å3
266 parametersΔρmin = 0.20 e Å3
3 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (9), 0000 Friedel pairs
Crystal data top
C23H27NO4SV = 2124.6 (6) Å3
Mr = 413.52Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3107 (13) ŵ = 0.18 mm1
b = 11.5702 (19) ÅT = 294 K
c = 25.117 (4) Å0.32 × 0.28 × 0.24 mm
Data collection top
Bruker CCD area-detector
diffractometer
4879 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
2113 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.958Rint = 0.072
14469 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.25 e Å3
S = 0.80Δρmin = 0.20 e Å3
4879 reflectionsAbsolute structure: Flack (1983)
266 parametersAbsolute structure parameter: 0.03 (9), 0000 Friedel pairs
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.89213 (11)0.55394 (7)0.78967 (3)0.0473 (2)
O10.3267 (3)0.78719 (18)0.76802 (7)0.0675 (7)
H1A0.21570.78110.77180.101*
O20.4350 (4)0.5250 (2)1.08884 (9)0.0861 (8)
O30.9870 (3)0.46719 (19)0.75994 (7)0.0632 (6)
O40.9685 (3)0.66785 (16)0.79438 (8)0.0566 (6)
N10.6906 (3)0.5672 (2)0.76437 (9)0.0479 (7)
H1B0.63250.50470.75670.057*
C10.5976 (4)0.6775 (2)0.75330 (10)0.0445 (8)
H1C0.67320.73970.76810.053*
C20.4131 (4)0.6802 (2)0.78197 (10)0.0460 (8)
H2A0.33770.61600.76900.055*
C30.4319 (4)0.6707 (3)0.84175 (12)0.0472 (8)
C40.3694 (4)0.5770 (3)0.86830 (13)0.0583 (9)
H4B0.31440.51740.84940.070*
C50.3861 (5)0.5677 (3)0.92531 (13)0.0513 (8)
C60.3222 (5)0.4720 (3)0.95269 (16)0.0779 (11)
H6A0.26580.41230.93410.094*
C70.3411 (5)0.4646 (4)1.00643 (15)0.0813 (12)
H7A0.29620.39991.02410.098*
C80.4258 (5)0.5514 (4)1.03559 (14)0.0675 (10)
C90.4884 (5)0.6479 (3)1.01131 (13)0.0631 (10)
H90.54490.70601.03090.076*
C100.4656 (4)0.6590 (3)0.95387 (14)0.0556 (9)
C110.5270 (5)0.7561 (3)0.92686 (14)0.0656 (10)
H11A0.57960.81710.94550.079*
C120.5096 (4)0.7619 (3)0.87195 (13)0.0607 (9)
H12A0.55010.82780.85430.073*
C130.5269 (7)0.6015 (3)1.12179 (14)0.1056 (17)
H13A0.52060.57451.15790.158*
H13B0.47120.67641.11940.158*
H13C0.65260.60651.11100.158*
C140.5815 (5)0.6977 (3)0.69304 (10)0.0534 (9)
H14A0.51590.77080.68800.064*
C150.7690 (5)0.7120 (3)0.66811 (12)0.0781 (11)
H15A0.75570.73000.63100.117*
H15B0.83690.64140.67190.117*
H15C0.83310.77360.68560.117*
C160.4717 (5)0.6043 (3)0.66478 (12)0.0874 (13)
H16A0.45530.62540.62810.131*
H16B0.35440.59650.68160.131*
H16C0.53620.53220.66680.131*
C170.8640 (4)0.4988 (3)0.85464 (11)0.0394 (8)
C180.8247 (5)0.3843 (3)0.86198 (12)0.0614 (10)
H18A0.81020.33560.83280.074*
C190.8067 (5)0.3418 (3)0.91305 (13)0.0677 (11)
H19A0.77690.26430.91770.081*
C200.8311 (4)0.4092 (3)0.95679 (13)0.0540 (9)
C210.8687 (5)0.5237 (3)0.94852 (13)0.0625 (10)
H21A0.88380.57220.97770.075*
C220.8848 (4)0.5685 (3)0.89785 (12)0.0552 (9)
H22A0.90980.64670.89320.066*
C230.8160 (5)0.3623 (3)1.01318 (12)0.0842 (13)
H23A0.69470.33311.01900.126*
H23B0.84080.42311.03820.126*
H23C0.90300.30101.01800.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0406 (4)0.0590 (5)0.0423 (5)0.0019 (5)0.0014 (4)0.0046 (5)
O10.0515 (15)0.0932 (15)0.0579 (15)0.0182 (13)0.0012 (11)0.0155 (13)
O20.122 (2)0.0950 (18)0.0408 (15)0.0049 (17)0.0030 (14)0.0088 (14)
O30.0618 (15)0.0799 (14)0.0479 (13)0.0201 (14)0.0084 (11)0.0000 (13)
O40.0446 (13)0.0607 (14)0.0645 (14)0.0144 (11)0.0059 (11)0.0122 (13)
N10.0459 (16)0.0485 (14)0.0493 (15)0.0073 (14)0.0116 (12)0.0092 (13)
C10.043 (2)0.0506 (19)0.0394 (17)0.0005 (17)0.0011 (17)0.0047 (16)
C20.043 (2)0.0560 (19)0.0387 (19)0.0025 (16)0.0056 (17)0.0106 (16)
C30.033 (2)0.057 (2)0.052 (2)0.0027 (16)0.0004 (16)0.0104 (19)
C40.045 (2)0.078 (2)0.052 (2)0.008 (2)0.0020 (18)0.006 (2)
C50.0444 (19)0.056 (2)0.054 (2)0.003 (2)0.0041 (19)0.002 (2)
C60.084 (3)0.079 (3)0.071 (3)0.008 (2)0.001 (2)0.004 (3)
C70.097 (3)0.091 (3)0.055 (3)0.002 (3)0.001 (2)0.014 (3)
C80.073 (3)0.086 (3)0.044 (2)0.019 (2)0.009 (2)0.006 (2)
C90.068 (3)0.077 (3)0.044 (2)0.009 (2)0.0023 (19)0.002 (2)
C100.046 (2)0.056 (2)0.065 (2)0.0109 (18)0.0086 (19)0.014 (2)
C110.068 (3)0.057 (2)0.072 (3)0.001 (2)0.003 (2)0.004 (2)
C120.061 (2)0.071 (2)0.050 (2)0.011 (2)0.0022 (19)0.014 (2)
C130.176 (5)0.087 (3)0.054 (2)0.018 (3)0.028 (3)0.014 (2)
C140.057 (2)0.068 (2)0.0348 (17)0.0081 (19)0.0011 (17)0.0113 (16)
C150.085 (3)0.098 (3)0.051 (2)0.003 (2)0.022 (2)0.016 (2)
C160.101 (3)0.112 (3)0.049 (2)0.004 (3)0.025 (2)0.003 (2)
C170.0369 (19)0.0443 (17)0.0370 (19)0.0016 (16)0.0064 (15)0.0008 (15)
C180.088 (3)0.064 (2)0.033 (2)0.013 (2)0.0095 (18)0.0055 (18)
C190.104 (3)0.053 (2)0.047 (2)0.015 (2)0.006 (2)0.005 (2)
C200.058 (3)0.067 (2)0.0376 (19)0.0110 (18)0.0045 (17)0.0065 (19)
C210.085 (3)0.062 (2)0.040 (2)0.007 (2)0.012 (2)0.0088 (18)
C220.068 (2)0.0515 (19)0.046 (2)0.004 (2)0.003 (2)0.0016 (18)
C230.109 (4)0.090 (3)0.054 (2)0.012 (3)0.010 (2)0.017 (2)
Geometric parameters (Å, º) top
S1—O31.430 (2)C11—C121.387 (4)
S1—O41.4365 (19)C11—H11A0.9300
S1—N11.612 (2)C12—H12A0.9300
S1—C171.764 (3)C13—H13A0.9600
O1—C21.434 (3)C13—H13B0.9600
O1—H1A0.8200C13—H13C0.9600
O2—C81.373 (4)C14—C151.516 (4)
O2—C131.386 (4)C14—C161.521 (4)
N1—C11.472 (3)C14—H14A0.9800
N1—H1B0.8600C15—H15A0.9600
C1—C21.529 (4)C15—H15B0.9600
C1—C141.536 (4)C15—H15C0.9600
C1—H1C0.9800C16—H16A0.9600
C2—C31.512 (4)C16—H16B0.9600
C2—H2A0.9800C16—H16C0.9600
C3—C41.352 (4)C17—C221.360 (3)
C3—C121.419 (4)C17—C181.369 (3)
C4—C51.441 (4)C18—C191.380 (4)
C4—H4B0.9300C18—H18A0.9300
C5—C61.385 (4)C19—C201.359 (4)
C5—C101.403 (4)C19—H19A0.9300
C6—C71.359 (4)C20—C211.369 (4)
C6—H6A0.9300C20—C231.521 (4)
C7—C81.388 (5)C21—C221.379 (4)
C7—H7A0.9300C21—H21A0.9300
C8—C91.352 (4)C22—H22A0.9300
C9—C101.458 (4)C23—H23A0.9600
C9—H90.9300C23—H23B0.9600
C10—C111.387 (4)C23—H23C0.9600
O3—S1—O4119.88 (13)C11—C12—H12A118.9
O3—S1—N1107.74 (13)C3—C12—H12A118.9
O4—S1—N1107.49 (12)O2—C13—H13A109.5
O3—S1—C17106.60 (13)O2—C13—H13B109.5
O4—S1—C17107.49 (14)H13A—C13—H13B109.5
N1—S1—C17107.02 (13)O2—C13—H13C109.5
C2—O1—H1A109.5H13A—C13—H13C109.5
C8—O2—C13117.6 (3)H13B—C13—H13C109.5
C1—N1—S1125.38 (19)C15—C14—C16111.2 (3)
C1—N1—H1B117.3C15—C14—C1110.7 (3)
S1—N1—H1B117.3C16—C14—C1113.1 (3)
N1—C1—C2109.6 (2)C15—C14—H14A107.2
N1—C1—C14110.7 (2)C16—C14—H14A107.2
C2—C1—C14113.2 (2)C1—C14—H14A107.2
N1—C1—H1C107.7C14—C15—H15A109.5
C2—C1—H1C107.7C14—C15—H15B109.5
C14—C1—H1C107.7H15A—C15—H15B109.5
O1—C2—C3110.2 (2)C14—C15—H15C109.5
O1—C2—C1106.9 (2)H15A—C15—H15C109.5
C3—C2—C1112.7 (2)H15B—C15—H15C109.5
O1—C2—H2A109.0C14—C16—H16A109.5
C3—C2—H2A109.0C14—C16—H16B109.5
C1—C2—H2A109.0H16A—C16—H16B109.5
C4—C3—C12117.9 (3)C14—C16—H16C109.5
C4—C3—C2121.2 (3)H16A—C16—H16C109.5
C12—C3—C2120.9 (3)H16B—C16—H16C109.5
C3—C4—C5121.4 (3)C22—C17—C18119.3 (3)
C3—C4—H4B119.3C22—C17—S1120.7 (2)
C5—C4—H4B119.3C18—C17—S1119.9 (2)
C6—C5—C10119.2 (3)C17—C18—C19119.3 (3)
C6—C5—C4121.7 (3)C17—C18—H18A120.3
C10—C5—C4119.1 (3)C19—C18—H18A120.3
C7—C6—C5120.6 (4)C20—C19—C18122.3 (3)
C7—C6—H6A119.7C20—C19—H19A118.8
C5—C6—H6A119.7C18—C19—H19A118.8
C6—C7—C8121.6 (4)C19—C20—C21117.3 (3)
C6—C7—H7A119.2C19—C20—C23122.6 (3)
C8—C7—H7A119.2C21—C20—C23120.1 (3)
C9—C8—O2127.3 (4)C20—C21—C22121.4 (3)
C9—C8—C7120.7 (3)C20—C21—H21A119.3
O2—C8—C7112.0 (4)C22—C21—H21A119.3
C8—C9—C10118.7 (3)C17—C22—C21120.2 (3)
C8—C9—H9120.6C17—C22—H22A119.9
C10—C9—H9120.6C21—C22—H22A119.9
C11—C10—C5119.6 (3)C20—C23—H23A109.5
C11—C10—C9121.2 (3)C20—C23—H23B109.5
C5—C10—C9119.1 (3)H23A—C23—H23B109.5
C10—C11—C12119.7 (3)C20—C23—H23C109.5
C10—C11—H11A120.1H23A—C23—H23C109.5
C12—C11—H11A120.1H23B—C23—H23C109.5
C11—C12—C3122.1 (3)
O3—S1—N1—C1135.8 (2)C4—C5—C10—C9177.9 (3)
O4—S1—N1—C15.4 (3)C8—C9—C10—C11179.9 (3)
C17—S1—N1—C1109.8 (2)C8—C9—C10—C52.4 (5)
S1—N1—C1—C2123.9 (2)C5—C10—C11—C120.1 (5)
S1—N1—C1—C14110.6 (3)C9—C10—C11—C12177.5 (3)
N1—C1—C2—O1177.8 (2)C10—C11—C12—C30.6 (5)
C14—C1—C2—O153.7 (3)C4—C3—C12—C111.8 (5)
N1—C1—C2—C360.9 (3)C2—C3—C12—C11179.4 (3)
C14—C1—C2—C3175.0 (2)N1—C1—C14—C1565.0 (3)
O1—C2—C3—C4127.1 (3)C2—C1—C14—C15171.5 (3)
C1—C2—C3—C4113.5 (3)N1—C1—C14—C1660.6 (4)
O1—C2—C3—C1250.4 (4)C2—C1—C14—C1662.9 (4)
C1—C2—C3—C1269.0 (3)O3—S1—C17—C22140.1 (3)
C12—C3—C4—C52.1 (5)O4—S1—C17—C2210.4 (3)
C2—C3—C4—C5179.7 (3)N1—S1—C17—C22104.8 (3)
C3—C4—C5—C6180.0 (3)O3—S1—C17—C1838.5 (3)
C3—C4—C5—C101.4 (5)O4—S1—C17—C18168.2 (3)
C10—C5—C6—C72.0 (5)N1—S1—C17—C1876.5 (3)
C4—C5—C6—C7179.4 (3)C22—C17—C18—C190.0 (5)
C5—C6—C7—C80.6 (6)S1—C17—C18—C19178.7 (3)
C13—O2—C8—C93.8 (5)C17—C18—C19—C201.6 (6)
C13—O2—C8—C7176.0 (3)C18—C19—C20—C212.2 (5)
C6—C7—C8—C91.7 (6)C18—C19—C20—C23178.5 (3)
C6—C7—C8—O2178.2 (3)C19—C20—C21—C221.2 (5)
O2—C8—C9—C10179.7 (3)C23—C20—C21—C22179.4 (3)
C7—C8—C9—C100.1 (5)C18—C17—C22—C210.9 (5)
C6—C5—C10—C11178.8 (3)S1—C17—C22—C21177.8 (3)
C4—C5—C10—C110.2 (5)C20—C21—C22—C170.3 (5)
C6—C5—C10—C93.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.862.613.343 (3)144
O1—H1A···O4ii0.822.303.033 (3)149
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC23H27NO4S
Mr413.52
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)7.3107 (13), 11.5702 (19), 25.117 (4)
V3)2124.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.32 × 0.28 × 0.24
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick 1996)
Tmin, Tmax0.944, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
14469, 4879, 2113
Rint0.072
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.091, 0.80
No. of reflections4879
No. of parameters266
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20
Absolute structureFlack (1983)
Absolute structure parameter0.03 (9), 0000 Friedel pairs

Computer programs: SMART (Siemens, 1995), SMART, SHELXTL-NT (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-NT.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.862.613.343 (3)144
O1—H1A···O4ii0.822.303.033 (3)149
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds