Download citation
Download citation
link to html
In the crystal structure of the title compound, C15H11N3S, the thia­zine ring adopts a boat conformation. The dihedral angle between the triazole and phenyl rings is 34.3 (1)°. The packing of the mol­ecule is stabilized by π–π interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007190/wn6145sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007190/wn6145Isup2.hkl
Contains datablock I

CCDC reference: 214603

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.044
  • wR factor = 0.146
  • Data-to-parameter ratio = 12.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Triazole derivatives exhibit antimicrobial (Habib et al., 1997), antiviral (Ergen et al., 1996), anti-HIV-1 (Invidiata et al., 1996), antifungal, antimycobacterial and anticonvulsant (Gulerman et al., 1997) activities. It is also a highly potent eosinophilia inhibitor (Naito et al., 1996), fungicide (Croften, 1996) and herbicide (Tada et al., 1995). Some of the benzothiazine derivatives are most active against the Gram-positive Bacillus subtilis (Armenize et al., 1991). It also possesses neuroleptic activities (Grol & Rollema, 1975). The X-ray crystal structure analysis of the title compound, (I), was carried out as part of our studies on triazole derivatives.

The N—N, C—N and C—S bond distances in the fused fragment system are comparable with those found in a related structure, viz. 3-amino-6,7-dihydro-6-hydroxy-5H-1,2,4-trizolo[3,4-b][1,3]thiazine (Glowka, 1994). The S1—C1 [1.736 (3) Å], C1—N1 [1.360 (4) Å] and C1—N3 [1.314 (4) Å] bond distances clearly reflect the resonance of the thiourea system (Valle et al., 1970). The C1—S1—C2 angle of 97.5 (1)° suggests that the S atom uses only p-orbitals to form bonds with atom C1 and C2. In order to minimize the steric repulsion between the H atoms at C8 and C11, the relevant bond angles, viz. C8—N1—C9 and N1—C9—C10, are widened.

In the title compound, (I) (Fig. 1), the benzene ring (A) is planar, with a maximum deviation of 0.010 (4) Å for C5. The thiazine ring (B) is in a boat conformation with puckering parameters (Cremer & Pople, 1975) q2 = 0.547 (2), Q3 = −0.054 (3), QT = 0.549 (2), Φ = 124° and θ = 96°, and asymmetry parameters (Nardelli, 1983) ΔS(C8) = 0.024 (1) and ΔS(N1—C1) = 0.030 (1). Atoms S1 and C8 deviate by 0.552 (1) and 0.400 (3) Å, respectively, from the weighted least-squares plane through the remaining four atoms C1, N1, C7 and C2. The dihedral angle between the benzene (A), triazole (C) and phenyl (D) rings are: A/C 38.5 (1) A/D 70.9 (1) and C/D 34.3 (1)°.

In addition to van der Waals interactions, π···π interactions are possibly involved to ensure cohesion between the molecules. There is a ππ interaction between the triazole ring at (x, y, z) and the phenyl ring at (1/2 − x, −1/2 + y, z), the centroids of the two rings being separated by 3.531 (2) Å.

Experimental top

The title compound was synthesized by irradiation (254 nm) of 4-(2-chlorobenzyl)-5-phenyl-1,2,4-triazole-3-thione, according to a reported method (Park et al., 1999), using CH3CN/NaOH as solvent. After completion of the reaction, removal of solvent and chromatographic separation on a silica-gel column by elution with a petroleum ether-ethyl acetate (1:1) mixture afforded the title compound.

Refinement top

The H atoms were positioned geometrically and were treated as riding on their parent C atoms, with aromatic C—H distances of 0.93 Å and other C—H distances of 0.97 Å,

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure with the atomic numbering scheme. Probability displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. A packing diagram of the molecule, viewed down the a axis. ππ interactions are indicated by dashed lines.
3-phenyl-4a,5-dihydro-1,2,4-triazolo[3,4-b][1,3]benzothiazine top
Crystal data top
C15H11N3SDx = 1.395 Mg m3
Mr = 265.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 26 reflections
a = 11.5674 (15) Åθ = 5–20°
b = 10.1948 (19) ŵ = 0.24 mm1
c = 21.433 (3) ÅT = 293 K
V = 2527.5 (7) Å3Block, colorless
Z = 80.46 × 0.26 × 0.23 mm
F(000) = 1104
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.015
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.6°
Graphite monochromatorh = 213
ω/2θ scansk = 212
2197 measured reflectionsl = 255
2110 independent reflections2 standard reflections every 200 reflections
1457 reflections with I > 2σ(I) intensity decay: <1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max < 0.001
2110 reflectionsΔρmax = 0.19 e Å3
173 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0065 (13)
Crystal data top
C15H11N3SV = 2527.5 (7) Å3
Mr = 265.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.5674 (15) ŵ = 0.24 mm1
b = 10.1948 (19) ÅT = 293 K
c = 21.433 (3) Å0.46 × 0.26 × 0.23 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.015
2197 measured reflections2 standard reflections every 200 reflections
2110 independent reflections intensity decay: <1.5%
1457 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.88Δρmax = 0.19 e Å3
2110 reflectionsΔρmin = 0.19 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21009 (7)0.03609 (8)0.40577 (4)0.0493 (3)
N10.21175 (18)0.2360 (2)0.32144 (10)0.0352 (6)
C90.2885 (2)0.2893 (3)0.28026 (13)0.0373 (7)
N20.3885 (2)0.2296 (3)0.28482 (12)0.0460 (7)
N30.3791 (2)0.1331 (3)0.33051 (13)0.0485 (7)
C70.0683 (2)0.2548 (3)0.40579 (13)0.0392 (7)
C10.2721 (2)0.1397 (3)0.35089 (13)0.0393 (7)
C100.2625 (2)0.3935 (3)0.23477 (12)0.0369 (7)
C80.0920 (2)0.2712 (3)0.33722 (13)0.0402 (7)
H8A0.03940.21620.31360.048*
H8B0.07800.36170.32540.048*
C120.1362 (3)0.4963 (3)0.16003 (15)0.0473 (8)
H120.06410.50240.14110.057*
C150.3497 (3)0.4804 (3)0.21702 (15)0.0448 (8)
H150.42150.47650.23640.054*
C110.1551 (3)0.4026 (3)0.20527 (14)0.0408 (7)
H110.09610.34500.21620.049*
C20.1163 (3)0.1526 (3)0.44058 (13)0.0412 (7)
C130.2235 (3)0.5811 (3)0.14273 (16)0.0545 (9)
H130.21030.64410.11210.065*
C60.0062 (3)0.3396 (3)0.43578 (15)0.0531 (9)
H60.03790.40950.41370.064*
C40.0145 (3)0.2220 (4)0.53150 (16)0.0637 (10)
H40.00370.21110.57340.076*
C30.0902 (3)0.1376 (3)0.50339 (15)0.0543 (9)
H30.12400.07040.52630.065*
C140.3299 (3)0.5721 (3)0.17092 (16)0.0527 (9)
H140.38920.62830.15880.063*
C50.0349 (3)0.3230 (4)0.49828 (17)0.0647 (10)
H50.08700.37960.51750.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0526 (6)0.0450 (5)0.0502 (5)0.0078 (4)0.0009 (4)0.0007 (4)
N10.0288 (12)0.0432 (14)0.0336 (12)0.0003 (11)0.0013 (11)0.0057 (11)
C90.0305 (15)0.0460 (18)0.0354 (16)0.0012 (14)0.0003 (12)0.0091 (14)
N20.0318 (14)0.0587 (17)0.0475 (16)0.0010 (13)0.0019 (12)0.0053 (13)
N30.0355 (15)0.0625 (18)0.0474 (16)0.0082 (13)0.0016 (12)0.0039 (14)
C70.0357 (16)0.0431 (16)0.0386 (16)0.0037 (14)0.0029 (13)0.0019 (14)
C10.0355 (17)0.0433 (17)0.0391 (17)0.0053 (15)0.0056 (14)0.0090 (14)
C100.0343 (16)0.0434 (17)0.0331 (15)0.0029 (14)0.0060 (13)0.0094 (13)
C80.0279 (15)0.0499 (18)0.0428 (18)0.0013 (14)0.0017 (13)0.0009 (15)
C120.0438 (18)0.056 (2)0.0427 (18)0.0049 (16)0.0015 (15)0.0063 (16)
C150.0346 (17)0.0499 (19)0.0500 (19)0.0039 (15)0.0071 (14)0.0117 (16)
C110.0361 (16)0.0473 (17)0.0392 (16)0.0056 (15)0.0043 (14)0.0053 (15)
C20.0406 (17)0.0445 (17)0.0384 (17)0.0057 (15)0.0012 (13)0.0035 (14)
C130.067 (2)0.0466 (19)0.0495 (19)0.0073 (19)0.0128 (18)0.0015 (16)
C60.051 (2)0.053 (2)0.055 (2)0.0089 (17)0.0120 (16)0.0007 (17)
C40.085 (3)0.067 (2)0.0392 (19)0.005 (2)0.0178 (19)0.0014 (18)
C30.070 (2)0.052 (2)0.0408 (19)0.0003 (18)0.0020 (18)0.0001 (16)
C140.050 (2)0.0450 (19)0.063 (2)0.0071 (17)0.0113 (18)0.0026 (18)
C50.076 (3)0.059 (2)0.058 (2)0.007 (2)0.029 (2)0.009 (2)
Geometric parameters (Å, º) top
S1—C11.736 (3)C12—C131.380 (5)
S1—C21.773 (3)C12—H120.9300
N1—C91.364 (3)C15—C141.379 (5)
N1—C11.360 (4)C15—H150.9300
N1—C81.470 (3)C11—H110.9300
C9—N21.311 (4)C2—C31.388 (4)
C9—C101.473 (4)C13—C141.375 (5)
N2—N31.393 (4)C13—H130.9300
N3—C11.314 (4)C6—C51.391 (5)
C7—C61.380 (4)C6—H60.9300
C7—C21.397 (4)C4—C51.376 (5)
C7—C81.504 (4)C4—C31.367 (5)
C10—C151.396 (4)C4—H40.9300
C10—C111.396 (4)C3—H30.9300
C8—H8A0.9700C14—H140.9300
C8—H8B0.9700C5—H50.9300
C12—C111.379 (4)
C1—S1—C297.49 (14)C10—C15—C14120.4 (3)
C9—N1—C1104.7 (2)C10—C15—H15119.8
C9—N1—C8131.6 (2)C14—C15—H15119.8
C1—N1—C8123.6 (2)C12—C11—C10120.4 (3)
N2—C9—N1110.0 (3)C12—C11—H11119.8
N2—C9—C10124.3 (3)C10—C11—H11119.8
N1—C9—C10125.6 (2)C3—C2—C7120.9 (3)
C9—N2—N3108.1 (2)C3—C2—S1117.9 (3)
C1—N3—N2105.7 (2)C7—C2—S1121.2 (2)
C6—C7—C2117.8 (3)C14—C13—C12119.7 (3)
C6—C7—C8120.0 (3)C14—C13—H13120.2
C2—C7—C8122.2 (3)C12—C13—H13120.2
N3—C1—N1111.5 (3)C7—C6—C5121.5 (3)
N3—C1—S1125.7 (2)C7—C6—H6119.3
N1—C1—S1122.8 (2)C5—C6—H6119.3
C15—C10—C11118.5 (3)C5—C4—C3120.6 (3)
C15—C10—C9119.4 (3)C5—C4—H4119.7
C11—C10—C9121.9 (3)C3—C4—H4119.7
N1—C8—C7111.7 (2)C2—C3—C4119.9 (3)
N1—C8—H8A109.3C2—C3—H3120.1
C7—C8—H8A109.3C4—C3—H3120.1
N1—C8—H8B109.3C13—C14—C15120.6 (3)
C7—C8—H8B109.3C13—C14—H14119.7
H8A—C8—H8B107.9C15—C14—H14119.7
C11—C12—C13120.4 (3)C4—C5—C6119.4 (3)
C11—C12—H12119.8C4—C5—H5120.3
C13—C12—H12119.8C6—C5—H5120.3
C1—N1—C9—N20.3 (3)C2—C7—C8—N136.8 (4)
C8—N1—C9—N2176.2 (3)C11—C10—C15—C140.6 (4)
C1—N1—C9—C10176.6 (3)C9—C10—C15—C14174.8 (3)
C8—N1—C9—C106.9 (4)C13—C12—C11—C100.9 (4)
N1—C9—N2—N30.0 (3)C15—C10—C11—C120.6 (4)
C10—C9—N2—N3177.0 (2)C9—C10—C11—C12175.9 (3)
C9—N2—N3—C10.4 (3)C6—C7—C2—C30.4 (4)
N2—N3—C1—N10.6 (3)C8—C7—C2—C3178.1 (3)
N2—N3—C1—S1176.7 (2)C6—C7—C2—S1178.4 (2)
C9—N1—C1—N30.6 (3)C8—C7—C2—S10.7 (4)
C8—N1—C1—N3176.3 (2)C1—S1—C2—C3149.2 (3)
C9—N1—C1—S1176.8 (2)C1—S1—C2—C732.0 (3)
C8—N1—C1—S16.3 (4)C11—C12—C13—C140.1 (5)
C2—S1—C1—N3146.8 (3)C2—C7—C6—C51.3 (5)
C2—S1—C1—N136.1 (3)C8—C7—C6—C5176.5 (3)
N2—C9—C10—C1533.5 (4)C7—C2—C3—C41.5 (5)
N1—C9—C10—C15150.0 (3)S1—C2—C3—C4177.3 (3)
N2—C9—C10—C11141.8 (3)C5—C4—C3—C20.9 (5)
N1—C9—C10—C1134.7 (4)C12—C13—C14—C151.1 (5)
C9—N1—C8—C7142.3 (3)C10—C15—C14—C131.4 (5)
C1—N1—C8—C733.7 (4)C3—C4—C5—C60.7 (6)
C6—C7—C8—N1145.6 (3)C7—C6—C5—C41.9 (6)

Experimental details

Crystal data
Chemical formulaC15H11N3S
Mr265.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)11.5674 (15), 10.1948 (19), 21.433 (3)
V3)2527.5 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.46 × 0.26 × 0.23
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2197, 2110, 1457
Rint0.015
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.146, 0.88
No. of reflections2110
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1997), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
S1—C11.736 (3)N1—C11.360 (4)
S1—C21.773 (3)C9—C101.473 (4)
N1—C91.364 (3)N2—N31.393 (4)
C1—S1—C297.49 (14)N2—C9—N1110.0 (3)
C9—N1—C8131.6 (2)N1—C9—C10125.6 (2)
C1—N1—C8123.6 (2)C9—N2—N3108.1 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds