Download citation
Download citation
link to html
In the title compound, C11H9NO, the azulene moiety is planar with a delocalized 10π-electron perimeter. In the crystal structure, the mol­ecules are connected by hydrogen bonds to form centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803008158/bt6270sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803008158/bt6270Isup2.hkl
Contains datablock I

CCDC reference: 214848

Key indicators

  • Powder X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.052
  • wR factor = 0.149
  • Data-to-parameter ratio = 14.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Azulene-1-carboxaldehyde oxime was first obtained by Hafner (Hafner & Bernhard, 1959) as cystalline derivative of azulene-1-carbaldehyde. To determine the configuration of the oxime, the synthesis was optimized. The (E)-azulene-1-carboxaldehyde oxime, (I), could be separated from the isomer (Z)-azulene-1-carboxaldehyde and crystallized. No isomerization could be observed in solution in the absence of acids. The (E)-azulene-1-carboxaldehyde oxime shows the expected molecular geometry (see Fig. 1), viz. a planar azulene moiety with a delocalized 10π-electron perimeter [mean C—C distance 1.392 (4) Å] and a central bond length of 1.489 (4) Å. The crystal packing is determined by intermolecular hydrogen bonds and π-stacking as shown in Fig. 2. Hydrogen bonded centrosymmetric dimers are stacked along the z axis.

Experimental top

To a mixture of hydroxylammoniumchloride (460 mg, 6.6 mmol) and potassium acetate (668 mg, 6.8 mmol) in 40 ml e thanol azulene-1-carbaldehyde (1.0 g, 6.5 mmol) was added and heated to 323 K. After 1.5 h, the solvent was evaporated. Chromatography with silica gel (hexane/ethyl acetate 4:1) yielded the isomer oximes. Dark green crystals of (I) were obtained from a toluene solution by evaporation. (E)-Azulene-1-carboxaldehyde oxime, (I), m.p. 393–394 K; 1H NMR (500 MHz, [D6]DMSO): δ = 10.94 (s, 1H, H11O), 8.92 (d, 1H, H8), 8.72 (s, 1H, H11), 8.42 (d, 1H, H4), 8.13 (d, 1H, H2), 7.74 (app.t, 1H, H6), 7.43 (d, 1H, H3), 7.32 (app. q, 2H, H5,H7); J2,3 = 4.0, J4,5 = 9.3, J7,8 = 9.8, J5,6 = J6,7=9.8 Hz. 13C NMR (125.75 MHz, [D6]DMSO): δ = 144.9 (C11), 143.2 (C10), 139.6 (C6), 138.2 (C4), 136.4 (C2), 136.3 (C9), 136.1 (C8), 125.4 (C5), 125.1 (C7), 121.8 (C1), 119.2 (C3).

Refinement top

H atoms of (I) are treated as riding atoms. The position of the hydroyxl H atom was found in a difference Fourier map and refined.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001) and ORTEPIII (Johnson & Burnett, 1998); software used to prepare material for publication: SHELXL97 CIF and IUCr SHELXL97 template.

Figures top
[Figure 1] Fig. 1. A view of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing plot of (I), viewed along the b axis.
E-azulenecarboxaldehyde oxime top
Crystal data top
C11H9NODx = 1.281 Mg m3
Mr = 171.19Melting point = 120–121 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.931 (3) ÅCell parameters from 5481 reflections
b = 6.174 (2) Åθ = 3.5–26.4°
c = 17.028 (5) ŵ = 0.08 mm1
β = 94.00 (2)°T = 293 K
V = 1775.6 (8) Å3Needle, dark green
Z = 80.52 × 0.28 × 0.14 mm
F(000) = 720
Data collection top
Oxford Diffraction Excalibur (TM) single-crystal X-ray
diffractometer with Sapphire CCD detector
815 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 26.4°, θmin = 3.5°
Rotation method data acquisition using ω and θ scansh = 2121
5481 measured reflectionsk = 75
1803 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0524P)2]
where P = (Fo2 + 2Fc2)/3
1803 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C11H9NOV = 1775.6 (8) Å3
Mr = 171.19Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.931 (3) ŵ = 0.08 mm1
b = 6.174 (2) ÅT = 293 K
c = 17.028 (5) Å0.52 × 0.28 × 0.14 mm
β = 94.00 (2)°
Data collection top
Oxford Diffraction Excalibur (TM) single-crystal X-ray
diffractometer with Sapphire CCD detector
815 reflections with I > 2σ(I)
5481 measured reflectionsRint = 0.066
1803 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.13 e Å3
1803 reflectionsΔρmin = 0.14 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean-plane data from final SHELXL refinement run:

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

2.9924 (0.0090) x + 2.8321 (0.0046) y + 14.5824 (0.0084) z = 10.5556 (0.0085)

* −0.0070 (0.0022) C1 * −0.0130 (0.0024) C2 * 0.0078 (0.0025) C3 * 0.0068 (0.0024) C4 * −0.0034 (0.0025) C5 * −0.0134 (0.0026) C6 * 0.0017 (0.0024) C7 * 0.0095 (0.0023) C8 * 0.0092 (0.0023) C9 * 0.0018 (0.0024) C10 − 0.0039 (0.0036) C11 − 0.0506 (0.0036) N11 − 0.0125 (0.0047) O11

Rms deviation of fitted atoms = 0.0084

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81777 (15)0.2035 (4)0.59510 (16)0.0523 (8)
C20.86254 (17)0.3869 (5)0.62111 (19)0.0678 (9)
H20.91580.40810.61320.081*
C30.81635 (18)0.5287 (5)0.65957 (19)0.0684 (9)
H30.83350.65880.68240.082*
C40.67554 (19)0.5457 (5)0.69167 (17)0.0639 (9)
H40.68680.67820.71590.077*
C50.59747 (18)0.4760 (5)0.69347 (19)0.0717 (10)
H50.56350.56800.71830.086*
C60.56442 (18)0.2881 (6)0.66306 (19)0.0718 (9)
H60.51070.27190.66960.086*
C70.59873 (17)0.1188 (5)0.62419 (19)0.0705 (9)
H70.56480.00520.60950.085*
C80.67591 (16)0.0935 (5)0.60397 (16)0.0584 (8)
H80.68650.03380.57750.070*
C90.73988 (15)0.2334 (4)0.61798 (15)0.0473 (7)
C100.73862 (16)0.4461 (5)0.65905 (16)0.0531 (8)
C110.84635 (16)0.0184 (5)0.55349 (16)0.0566 (8)
H110.81200.09590.54090.068*
N110.91781 (13)0.0081 (4)0.53362 (14)0.0616 (7)
O110.93267 (11)0.1898 (4)0.49475 (14)0.0763 (7)
H11O0.9787 (12)0.168 (5)0.4808 (19)0.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0514 (17)0.0573 (18)0.0485 (18)0.0087 (15)0.0053 (14)0.0002 (15)
C20.0526 (19)0.076 (2)0.075 (2)0.0178 (17)0.0090 (16)0.003 (2)
C30.072 (2)0.061 (2)0.073 (2)0.0147 (18)0.0120 (17)0.0080 (18)
C40.080 (2)0.0551 (19)0.057 (2)0.0070 (17)0.0051 (16)0.0009 (16)
C50.062 (2)0.078 (2)0.076 (2)0.0146 (19)0.0142 (17)0.003 (2)
C60.0479 (18)0.089 (3)0.079 (2)0.0009 (19)0.0069 (16)0.003 (2)
C70.0509 (19)0.077 (2)0.084 (2)0.0124 (17)0.0064 (17)0.009 (2)
C80.0533 (18)0.0608 (18)0.061 (2)0.0034 (15)0.0051 (14)0.0022 (17)
C90.0496 (17)0.0505 (17)0.0418 (17)0.0070 (14)0.0034 (13)0.0044 (14)
C100.0576 (19)0.0542 (18)0.0477 (19)0.0038 (15)0.0041 (14)0.0025 (15)
C110.0504 (18)0.062 (2)0.058 (2)0.0106 (15)0.0076 (15)0.0015 (16)
N110.0511 (15)0.0637 (17)0.0714 (19)0.0034 (12)0.0137 (12)0.0062 (14)
O110.0603 (14)0.0758 (15)0.0952 (18)0.0054 (12)0.0239 (12)0.0206 (13)
Geometric parameters (Å, º) top
C1—C91.413 (3)C6—C71.386 (4)
C1—C21.416 (3)C6—H60.9300
C1—C111.446 (3)C7—C81.383 (4)
C2—C31.371 (4)C7—H70.9300
C2—H20.9300C8—C91.393 (3)
C3—C101.411 (3)C8—H80.9300
C3—H30.9300C9—C101.489 (4)
C4—C101.382 (3)C11—N111.281 (3)
C4—C51.392 (4)C11—H110.9300
C4—H40.9300N11—O111.420 (3)
C5—C61.374 (4)O11—H11O0.840 (17)
C5—H50.9300
C9—C1—C2107.4 (3)C8—C7—C6129.7 (3)
C9—C1—C11126.1 (2)C8—C7—H7115.2
C2—C1—C11126.5 (3)C6—C7—H7115.2
C3—C2—C1110.5 (3)C7—C8—C9128.6 (3)
C3—C2—H2124.8C7—C8—H8115.7
C1—C2—H2124.8C9—C8—H8115.7
C2—C3—C10109.2 (3)C8—C9—C1127.0 (3)
C2—C3—H3125.4C8—C9—C10126.2 (2)
C10—C3—H3125.4C1—C9—C10106.8 (2)
C10—C4—C5129.3 (3)C4—C10—C3125.7 (3)
C10—C4—H4115.4C4—C10—C9128.2 (3)
C5—C4—H4115.4C3—C10—C9106.1 (2)
C6—C5—C4128.0 (3)N11—C11—C1121.6 (3)
C6—C5—H5116.0N11—C11—H11119.2
C4—C5—H5116.0C1—C11—H11119.2
C5—C6—C7130.0 (3)C11—N11—O11111.6 (2)
C5—C6—H6115.0N11—O11—H11O101 (2)
C7—C6—H6115.0
C9—C1—C2—C30.4 (3)C11—C1—C9—C10179.9 (2)
C11—C1—C2—C3179.0 (3)C5—C4—C10—C3179.7 (3)
C1—C2—C3—C101.1 (4)C5—C4—C10—C91.2 (5)
C10—C4—C5—C60.4 (6)C2—C3—C10—C4179.4 (3)
C4—C5—C6—C71.0 (6)C2—C3—C10—C91.4 (3)
C5—C6—C7—C81.2 (6)C8—C9—C10—C40.7 (4)
C6—C7—C8—C90.3 (5)C1—C9—C10—C4179.7 (3)
C7—C8—C9—C1178.8 (3)C8—C9—C10—C3179.9 (3)
C7—C8—C9—C100.1 (5)C1—C9—C10—C31.1 (3)
C2—C1—C9—C8179.5 (3)C9—C1—C11—N11178.4 (3)
C11—C1—C9—C81.1 (5)C2—C1—C11—N112.3 (5)
C2—C1—C9—C100.4 (3)C1—C11—N11—O11178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11O···N11i0.84 (2)2.04 (2)2.841 (3)158 (3)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H9NO
Mr171.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.931 (3), 6.174 (2), 17.028 (5)
β (°) 94.00 (2)
V3)1775.6 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.52 × 0.28 × 0.14
Data collection
DiffractometerOxford Diffraction Excalibur (TM) single-crystal X-ray
diffractometer with Sapphire CCD detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5481, 1803, 815
Rint0.066
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.149, 0.98
No. of reflections1803
No. of parameters121
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: CrysAlis CCD (Oxford Diffraction, 2001), CrysAlis CCD, CrysAlis RED (Oxford Diffraction, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2001) and ORTEPIII (Johnson & Burnett, 1998), SHELXL97 CIF and IUCr SHELXL97 template.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11O···N11i0.840 (17)2.043 (19)2.841 (3)158 (3)
Symmetry code: (i) x+2, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds