Download citation
Download citation
link to html
In the title compound, C18H14Cl2N4O2, the triazole ring and benzyl­iden­amino moiety are each planar, and approximately coplanar with respect to each other. The crystal structure is stabilized by C—H...O and C—H...N intra- and intermol­ecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007426/cm6033sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007426/cm6033Isup2.hkl
Contains datablock I

CCDC reference: 214807

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.060
  • wR factor = 0.133
  • Data-to-parameter ratio = 11.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 24.79 From the CIF: _reflns_number_total 2730 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3010 Completeness (_total/calc) 90.70% Alert C: < 95% complete THETM_01 Alert C The value of sine(theta_max)/wavelength is less than 0.590 Calculated sin(theta_max)/wavelength = 0.5899
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

The 1,2,4-triazole ring systems are very interesting because of their similarity to the 1,3-imidazole bridging found in the copper–zinc protein superoxide dismutase (Feiters, 1990) and for their ability to act as a doubly bidentate chelating ligand (Wang et al., 1998). Compounds containing these systems have been structurally characterized as part of a study of Schiff bases of amine- and thione-substituted triazoles (McCarrick et al., 1999; Sen et al., 1998) and their metal complexes (Sen et al., 1996, 1997; Clark et al., 1999). Most Schiff bases possess antibacterial, anticancer, antiinflamunantory and antitoxic activities (Williams, 1972), and sulfur-containing Schiff bases are particularly effective. The 4-amino-3-methyl-1,2,4-triazole-5-thione derivative of p-nitrophenyl aldehyde has been structurally characterized and it has been shown to be highly effective as an inhibitor of Staphylococcus aureus (Liu et al., 1999). Therefore, the crystal structure analysis of the title compound, (I), has been carried out.

The title compound consists of one 1,2,4-triazole ring (ring A: N3/C8/N2/C9/N4) with an acetly group substituted at N3, a benzylidenamino group, a p-chlorobenzyl group and an O atom substituted at C9, N2, and C8, respectively.

The NC bond lengths [N1C7 = 1.276 (4) Å and N4C9 = 1.280 (4) Å] are close to the values quoted in the literature (Puviarasan et al., 1999; Liu et al., 1999; Zhu et al., 2000), while the presence of the acetyl group at N3 and the benzylidenamino group at C9 causes a small even if significant stretching of the N—N bond [N3—N4 = 1.404 (4) Å].

The Cl1—C14 and Cl2—C3 bond lengths [1.744 (4) and 1.742 (4) Å, respectively] conform with those previously found (Wang et al., 1998; Puviarasan et al., 1999).

The title compound consists of three planar rings. One is the triazole ring, ring A, others are ring B (C1—C6) and ring C (C11—C16). In the triazole ring, the observed maximum deviation is 0.008 (3) Å for C9 atom. The O1 atom is 0.024 (3) Å from the plane. The dihedral angle between rings A/B, A/C and B/C are 11.1 (1), 84.0 (1) and 89.1 (1)°, respectively.

The crystal structure of (I) is stabilized by four intramolecular and two intermolecular hydrogen bonds. Indeed all intramolecular hydrogen bonds seem to drive the orientation of the substituents with respect to the triazole rings as indicated by the near coplanarity of the groups involved. In the molecule, the p-chlorobenzyl and the acetyl group are able to form hydrogen bonds with the benzylidenamino and atom O1 of a symmetry-related molecule. All details of the C—H···N and C—H···O inter- and intramolecular hydrogen bonds found in the crystal are quoted in Table 2. These contacts generate infinite chains in the crystal and seem to force the molecule to adapt a twisted conformation.

Experimental top

3-(p-Chlorobenzyl)-4-(p-chlorobenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol- 5-one (0.01 mol) was treated with 10 ml of acetic anhydride and the mixture was refluxed for 1 h. The resulting product was filtered off and dried in vacuo. Several recrystallizations from ethyl acetate gave the pure title compound. Yield: 84%, m.p.: 461–462 K.

Refinement top

The H atoms were located geometrically and refined using a riding model, fixing the aromatic C—H distance at 0.93 Å, the methylene C—H distance 0.97 Å and methyl group C—H distance 0.96 Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1997) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. An ORTEPIII drawing of the title compound, showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are shown at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of title compound, illustrating the hydrogen-bonding network.
1-Acetyl-3-(p-chlorobenzyl)-4-benzylidenamino-4,5-dihydro- 1H-1,2,4-triazole-5-one top
Crystal data top
C18H14Cl2N4O2Z = 2
Mr = 389.23F(000) = 400
Triclinic, P1Dx = 1.478 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7109 (10) ÅCell parameters from 870 reflections
b = 8.6329 (12) Åθ = 2.4–22.2°
c = 15.833 (2) ŵ = 0.39 mm1
α = 84.144 (3)°T = 293 K
β = 79.466 (3)°Prism, colourless
γ = 76.252 (3)°0.42 × 0.10 × 0.10 mm
V = 874.3 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1873 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 24.8°, θmin = 2.4°
ϕ and ω scansh = 77
4127 measured reflectionsk = 810
2730 independent reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.3745P]
where P = (Fo2 + 2Fc2)/3
2730 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C18H14Cl2N4O2γ = 76.252 (3)°
Mr = 389.23V = 874.3 (2) Å3
Triclinic, P1Z = 2
a = 6.7109 (10) ÅMo Kα radiation
b = 8.6329 (12) ŵ = 0.39 mm1
c = 15.833 (2) ÅT = 293 K
α = 84.144 (3)°0.42 × 0.10 × 0.10 mm
β = 79.466 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1873 reflections with I > 2σ(I)
4127 measured reflectionsRint = 0.027
2730 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
2730 reflectionsΔρmin = 0.35 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21.1800 (4)1.7986 (3)1.00736 (17)0.0572 (8)
C151.1525 (7)1.7652 (5)0.5174 (3)0.0533 (11)
H151.11491.84760.48000.064*
C171.2249 (6)1.7657 (4)0.9423 (2)0.0402 (9)
C181.4333 (6)1.8221 (5)0.9154 (3)0.0538 (11)
H18A1.43021.78090.86100.081*
H18B1.46771.93670.91010.081*
H18C1.53601.78480.95790.081*
Cl11.5014 (2)1.82542 (15)0.44684 (8)0.0794 (5)
C161.0211 (6)1.6824 (5)0.5728 (2)0.0482 (10)
H160.89471.70940.57230.058*
O10.7919 (4)1.5751 (3)0.96023 (16)0.0450 (7)
N31.0756 (4)1.6646 (3)0.88547 (18)0.0362 (7)
C141.3371 (6)1.7252 (5)0.5182 (2)0.0447 (10)
C80.8808 (6)1.5775 (4)0.9002 (2)0.0368 (9)
N41.1222 (5)1.6352 (4)0.80651 (18)0.0396 (8)
N20.8117 (4)1.4923 (3)0.82625 (18)0.0370 (7)
C90.9615 (5)1.5344 (4)0.7732 (2)0.0351 (9)
C111.0747 (5)1.5607 (4)0.6287 (2)0.0361 (9)
C70.4901 (6)1.3436 (4)0.8489 (2)0.0400 (9)
H70.50611.39350.89980.048*
C50.1342 (6)1.1938 (4)0.8636 (2)0.0430 (10)
H50.14261.24960.91190.052*
N10.6310 (4)1.3795 (3)0.80140 (18)0.0382 (7)
C131.3938 (6)1.6057 (5)0.5726 (3)0.0547 (11)
H131.52021.57900.57270.066*
C100.9282 (6)1.4656 (5)0.6873 (2)0.0463 (10)
H10A0.94731.35690.69580.056*
H10B0.78601.46180.65940.056*
C60.3024 (5)1.2219 (4)0.8210 (2)0.0354 (8)
C40.0470 (6)1.0837 (4)0.8356 (2)0.0462 (10)
H40.16051.06640.86410.055*
C121.2630 (6)1.5247 (5)0.6276 (3)0.0513 (11)
H121.30271.44310.66510.062*
C30.0562 (6)1.0005 (4)0.7648 (2)0.0413 (9)
C10.2889 (6)1.1329 (4)0.7510 (2)0.0458 (10)
H10.40301.14840.72290.055*
Cl20.28328 (17)0.86281 (13)0.72774 (7)0.0627 (4)
C20.1114 (6)1.0229 (4)0.7224 (2)0.0481 (10)
H20.10410.96460.67530.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0571 (18)0.0689 (19)0.0462 (17)0.0008 (15)0.0156 (14)0.0252 (14)
C150.067 (3)0.043 (2)0.049 (3)0.009 (2)0.015 (2)0.0058 (19)
C170.043 (2)0.038 (2)0.037 (2)0.0055 (18)0.0054 (18)0.0040 (17)
C180.044 (2)0.063 (3)0.051 (3)0.000 (2)0.011 (2)0.014 (2)
Cl10.0939 (10)0.0774 (9)0.0656 (8)0.0140 (7)0.0530 (7)0.0047 (6)
C160.044 (2)0.055 (3)0.048 (3)0.012 (2)0.014 (2)0.004 (2)
O10.0454 (16)0.0528 (17)0.0387 (15)0.0028 (13)0.0188 (13)0.0096 (12)
N30.0350 (18)0.0422 (18)0.0308 (17)0.0006 (14)0.0125 (13)0.0053 (14)
C140.049 (2)0.049 (2)0.033 (2)0.007 (2)0.0178 (18)0.0089 (19)
C80.039 (2)0.039 (2)0.033 (2)0.0045 (17)0.0100 (18)0.0033 (17)
N40.0405 (18)0.0461 (19)0.0318 (17)0.0023 (16)0.0125 (14)0.0055 (14)
N20.0349 (17)0.0423 (18)0.0323 (17)0.0004 (15)0.0102 (14)0.0064 (14)
C90.037 (2)0.036 (2)0.031 (2)0.0023 (18)0.0108 (17)0.0006 (16)
C110.036 (2)0.040 (2)0.029 (2)0.0031 (18)0.0082 (16)0.0130 (17)
C70.044 (2)0.046 (2)0.031 (2)0.0077 (19)0.0086 (18)0.0047 (17)
C50.044 (2)0.051 (2)0.036 (2)0.0035 (19)0.0164 (18)0.0085 (18)
N10.0347 (17)0.0418 (18)0.0348 (17)0.0006 (14)0.0093 (14)0.0029 (14)
C130.042 (2)0.063 (3)0.062 (3)0.011 (2)0.017 (2)0.000 (2)
C100.045 (2)0.055 (3)0.035 (2)0.0034 (19)0.0128 (18)0.0088 (18)
C60.039 (2)0.033 (2)0.034 (2)0.0033 (17)0.0138 (17)0.0007 (16)
C40.040 (2)0.049 (2)0.049 (2)0.0020 (19)0.0153 (19)0.007 (2)
C120.051 (3)0.056 (3)0.045 (2)0.010 (2)0.011 (2)0.010 (2)
C30.038 (2)0.038 (2)0.044 (2)0.0010 (18)0.0084 (18)0.0043 (18)
C10.047 (2)0.050 (2)0.044 (2)0.000 (2)0.0271 (19)0.0072 (19)
Cl20.0496 (6)0.0592 (7)0.0724 (8)0.0082 (5)0.0099 (5)0.0204 (6)
C20.058 (3)0.045 (2)0.042 (2)0.003 (2)0.016 (2)0.0114 (19)
Geometric parameters (Å, º) top
O2—C171.202 (4)C11—C121.375 (5)
C15—C141.361 (6)C11—C101.515 (5)
C15—C161.383 (5)C7—N11.276 (4)
C15—H150.9300C7—C61.465 (5)
C17—N31.411 (4)C7—H70.9300
C17—C181.492 (5)C5—C61.379 (5)
C18—H18A0.9600C5—C41.385 (5)
C18—H18B0.9600C5—H50.9300
C18—H18C0.9600C13—C121.372 (5)
Cl1—C141.744 (4)C13—H130.9300
C16—C111.374 (5)C10—H10A0.9700
C16—H160.9300C10—H10B0.9700
O1—C81.208 (4)C6—C11.390 (5)
N3—C81.391 (4)C4—C31.376 (5)
N3—N41.404 (4)C4—H40.9300
C14—C131.355 (6)C12—H120.9300
C8—N21.393 (4)C3—C21.378 (5)
N4—C91.280 (4)C3—Cl21.742 (4)
N2—N11.384 (4)C1—C21.371 (5)
N2—C91.386 (4)C1—H10.9300
C9—C101.498 (5)C2—H20.9300
C14—C15—C16119.4 (4)N1—C7—C6118.3 (3)
C14—C15—H15120.3N1—C7—H7120.8
C16—C15—H15120.3C6—C7—H7120.8
O2—C17—N3119.9 (3)C6—C5—C4121.0 (3)
O2—C17—C18125.0 (4)C6—C5—H5119.5
N3—C17—C18115.0 (3)C4—C5—H5119.5
C17—C18—H18A109.5C7—N1—N2119.9 (3)
C17—C18—H18B109.5C14—C13—C12119.3 (4)
H18A—C18—H18B109.5C14—C13—H13120.3
C17—C18—H18C109.5C12—C13—H13120.3
H18A—C18—H18C109.5C9—C10—C11113.0 (3)
H18B—C18—H18C109.5C9—C10—H10A109.0
C11—C16—C15120.9 (4)C11—C10—H10A109.0
C11—C16—H16119.5C9—C10—H10B109.0
C15—C16—H16119.5C11—C10—H10B109.0
C8—N3—N4112.7 (3)H10A—C10—H10B107.8
C8—N3—C17127.0 (3)C5—C6—C1118.4 (3)
N4—N3—C17120.2 (3)C5—C6—C7120.6 (3)
C13—C14—C15120.9 (4)C1—C6—C7121.0 (3)
C13—C14—Cl1119.2 (3)C3—C4—C5118.9 (3)
C15—C14—Cl1119.9 (3)C3—C4—H4120.5
O1—C8—N3130.2 (3)C5—C4—H4120.5
O1—C8—N2128.3 (3)C13—C12—C11121.7 (4)
N3—C8—N2101.5 (3)C13—C12—H12119.1
C9—N4—N3104.5 (3)C11—C12—H12119.1
N1—N2—C9119.7 (3)C4—C3—C2121.4 (3)
N1—N2—C8131.3 (3)C4—C3—Cl2119.8 (3)
C9—N2—C8109.0 (3)C2—C3—Cl2118.9 (3)
N4—C9—N2112.2 (3)C2—C1—C6121.5 (3)
N4—C9—C10126.5 (3)C2—C1—H1119.3
N2—C9—C10121.3 (3)C6—C1—H1119.3
C16—C11—C12117.7 (3)C1—C2—C3118.8 (3)
C16—C11—C10121.2 (3)C1—C2—H2120.6
C12—C11—C10121.1 (4)C3—C2—H2120.6
C14—C15—C16—C110.2 (6)C6—C7—N1—N2179.1 (3)
O2—C17—N3—C88.9 (6)C9—N2—N1—C7178.0 (3)
C18—C17—N3—C8170.2 (3)C8—N2—N1—C73.1 (5)
O2—C17—N3—N4175.3 (3)C15—C14—C13—C120.1 (6)
C18—C17—N3—N45.6 (5)Cl1—C14—C13—C12178.7 (3)
C16—C15—C14—C130.2 (6)N4—C9—C10—C1117.2 (6)
C16—C15—C14—Cl1178.5 (3)N2—C9—C10—C11162.5 (3)
N4—N3—C8—O1179.2 (4)C16—C11—C10—C991.1 (4)
C17—N3—C8—O14.8 (6)C12—C11—C10—C991.1 (4)
N4—N3—C8—N20.5 (4)C4—C5—C6—C12.3 (6)
C17—N3—C8—N2175.6 (3)C4—C5—C6—C7177.3 (3)
C8—N3—N4—C90.4 (4)N1—C7—C6—C5171.4 (3)
C17—N3—N4—C9176.8 (3)N1—C7—C6—C18.2 (5)
O1—C8—N2—N12.5 (6)C6—C5—C4—C30.9 (6)
N3—C8—N2—N1177.8 (3)C14—C13—C12—C110.4 (6)
O1—C8—N2—C9178.5 (4)C16—C11—C12—C130.4 (6)
N3—C8—N2—C91.2 (4)C10—C11—C12—C13177.5 (4)
N3—N4—C9—N21.2 (4)C5—C4—C3—C20.9 (6)
N3—N4—C9—C10178.5 (3)C5—C4—C3—Cl2179.4 (3)
N1—N2—C9—N4177.5 (3)C5—C6—C1—C22.1 (6)
C8—N2—C9—N41.6 (4)C7—C6—C1—C2177.5 (4)
N1—N2—C9—C102.8 (5)C6—C1—C2—C30.3 (6)
C8—N2—C9—C10178.1 (3)C4—C3—C2—C11.2 (6)
C15—C16—C11—C120.1 (5)Cl2—C3—C2—C1179.1 (3)
C15—C16—C11—C10177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···N10.972.612.853 (5)94
C1—H1···N10.932.502.792 (4)99
C18—H18A···N40.962.222.754 (4)114
C7—H7···O10.932.292.949 (4)127
C12—H12···N1i0.932.903.678 (5)142
C18—H18C···O1i0.962.773.513 (5)135
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H14Cl2N4O2
Mr389.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.7109 (10), 8.6329 (12), 15.833 (2)
α, β, γ (°)84.144 (3), 79.466 (3), 76.252 (3)
V3)874.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.42 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4127, 2730, 1873
Rint0.027
(sin θ/λ)max1)0.590
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.133, 1.04
No. of reflections2730
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.35

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1997) and PARST (Nardelli, 1995).

Selected bond lengths (Å) top
Cl1—C141.744 (4)C7—N11.276 (4)
N3—N41.404 (4)C3—Cl21.742 (4)
N4—C91.280 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···N10.972.612.853 (5)94
C1—H1···N10.932.502.792 (4)99
C18—H18A···N40.962.222.754 (4)114
C7—H7···O10.932.292.949 (4)127
C12—H12···N1i0.932.903.678 (5)142
C18—H18C···O1i0.962.773.513 (5)135
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds