Download citation
Download citation
link to html
The structure of the title compound, C11H14Cl3NO, is stabilized by intra- and intermolecular hydrogen bonds. The cyclo­pentene ring adopts an envelope conformation while the pyrrolidinyl moiety adopts a twist conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803010535/cm6041sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803010535/cm6041Isup2.hkl
Contains datablock I

CCDC reference: 214838

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.040
  • wR factor = 0.124
  • Data-to-parameter ratio = 17.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Besides the well known methods for the acylation of enamines (Cook, 1969), we have recently investigated the synthesis of α- and α'-diacetylated enamino ketones under the presence of zinc, which is an unusual catalyst for the acylation reactions (Şenöz & Tuno¯glu, 2003). The crystal structures of 2,6-bis(trichloroacetyl)-1-(1-morpholinyl)cyclohexene and 2,6-bis(trichloroacetyl)cyclohexanone have been reported elsewhere (Özbey et al., 2000, 2003). Zinc catalyses ketene formations over [2 + 2]-cycloaddition reactions (Şenöz & Yıldırır, 1996; Brady, 1981), however, we have obtained diacetylated product, 2,6-bis((trichloroacetyl)-1-(1-pyrrolidinyl)cyclopentene by the corresponding cyclic enaminoketone, 1-(1-pyrrolidinyl)cyclopentene, with zinc catalyst. The same enamine yielded monoacetylated product, 2-trichloroacetyl-1-(1-pyrrolidinyl)cyclopentene by the effect of triethylamine used to prevent salt formation without using zinc, as in the literature.

Here we report the crystal structure of 2-trichloroacetyl-1-(1-pyrrolidinyl)cyclopentene, (I), obtained by the reaction of 1-(1-pyrrolidinyl)cyclopentene with trichloroacetyl chloride. The X-ray crystal analysis shows that the cyclopentene ring adopts a half-chair conformation, twisted at C5. Atom C5 is displaced from the C3/C4/C6/C7 mean plane by −0.430 (3) Å. The puckering parameters (Cremer & Pople, 1975) of this ring are Q = 0.299 (3) Å and θ = 232.1 (5)°. The pyrrolidinyl moiety deviates from the half-chair conformation by the ring-puckering parameters of Q = 0.309 (4) Å and θ = 273.0 (5)°. The ketone group at C3 and the pyrolidinyl ring at C7 are slightly twisted in opposite directions, with torsion angles C1—C2—C3—C7 and C3—C7—N1—C8 of −171.5 (2) and 177.4 (2)°, respectively. The hydrogen-bond interaction between atoms O1 and C11 can be caused the planarity of this part of the molecule.

The molecule stabilizes with inter- and intramolecular hydrogen bonds. Details of the hydrogen-bonding geometry are given in Table 2.

Experimental top

A solution of freshly distilled trichloroacetyl chloride (17.8 mmol, 3.23 g) in dry ether was added dropwise over a period of 1 h to a cooled mixture (in an ice–salt bath) of triethylamine (17.8 mmol, 1.80 g) and 1-(1-pyrrolidinyl)cyclopentene (17.8 mmol, 2.69 g) in 50 ml anhydrous ether while stirring under a nitrogen atmosphere. The reaction mixture was stirred overnight then ammonium chloride was removed by filtration and the solvent was evaporated under reduced procedure. The residue was dissolved in hexane, dried over MgSO4, filtered and then the solvent was evaporated. The crude product was recrystallized from hexane to give 2.74 g (55%) 2-trichloroacetyl-1-(1-pyrrolidinyl)cyclopentene as a pure yellow solid. M.p. 363 K; IR (KBr): 1624 (CO), 1520 (CC) cm−1; 1H NMR: δ 2.90–3.00 (t, 4H, NCH2), 2.50–2.65 (t, 4H, NCH2CH2), 1.90–2.00 (m, 4H, CH2CH2CH2), 1.75–1.85 (m, 2H, CH2CH2CH2).

Refinement top

H atoms were placed geometrically 0.97 Å from their parent atoms and their displacement parameters were refined isotropically.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of the asymmetric unit of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(I) top
Crystal data top
C11H14Cl3NODx = 1.462 Mg m3
Mr = 282.58Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 25 reflections
a = 11.4236 (10) Åθ = 10.2–18.2°
b = 10.2623 (9) ŵ = 0.69 mm1
c = 21.899 (3) ÅT = 295 K
V = 2567.3 (5) Å3Prism, light yellow
Z = 80.48 × 0.48 × 0.12 mm
F(000) = 1168
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.029
ω/2θ scansθmax = 26.3°, θmin = 2.6°
Absorption correction: empirical (using intensity measurements)
ψ scan (North et al., 1968)
h = 014
Tmin = 0.732, Tmax = 0.922k = 1212
5032 measured reflectionsl = 270
2597 independent reflections3 standard reflections every 120 min
1823 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.494P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.32 e Å3
2597 reflectionsΔρmin = 0.28 e Å3
145 parameters
Crystal data top
C11H14Cl3NOV = 2567.3 (5) Å3
Mr = 282.58Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.4236 (10) ŵ = 0.69 mm1
b = 10.2623 (9) ÅT = 295 K
c = 21.899 (3) Å0.48 × 0.48 × 0.12 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1823 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
ψ scan (North et al., 1968)
Rint = 0.029
Tmin = 0.732, Tmax = 0.9223 standard reflections every 120 min
5032 measured reflections intensity decay: 3%
2597 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
2597 reflectionsΔρmin = 0.28 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9731 (2)0.2548 (2)0.67784 (10)0.0501 (6)
C20.98078 (19)0.2878 (2)0.60772 (9)0.0431 (5)
C31.0816 (2)0.3516 (2)0.58535 (10)0.0465 (5)
C41.1721 (2)0.4275 (3)0.62241 (12)0.0667 (7)
H4A1.13810.46250.65950.08*
H4B1.23860.37310.63290.08*
C51.2078 (3)0.5368 (3)0.57850 (14)0.0760 (8)
H5A1.28820.56310.58570.091*
H5B1.15730.61210.58350.091*
C61.1942 (2)0.4793 (2)0.51507 (12)0.0579 (6)
H6A1.26810.44510.50030.07*
H6B1.16580.54420.48650.07*
C71.10581 (18)0.3716 (2)0.52342 (11)0.0448 (5)
C81.1101 (2)0.3374 (3)0.41216 (11)0.0614 (7)
H8A1.07920.42110.39950.074*
H8B1.19490.33970.40960.074*
C91.0613 (4)0.2298 (4)0.37376 (13)0.0919 (10)
H9A1.11420.20910.34050.11*
H9B0.98620.25470.35670.11*
C101.0481 (4)0.1171 (3)0.41488 (12)0.0835 (10)
H10A0.98610.060.40080.1*
H10B1.12040.06770.41720.1*
C111.0178 (2)0.1750 (2)0.47640 (11)0.0583 (6)
H11A1.05010.12290.50930.07*
H11B0.93360.18110.48160.07*
Cl10.86432 (7)0.13690 (8)0.69227 (3)0.0681 (2)
Cl21.10738 (7)0.19236 (8)0.70669 (3)0.0729 (3)
Cl30.93559 (8)0.39891 (7)0.71824 (3)0.0804 (3)
N11.07128 (16)0.30468 (19)0.47504 (8)0.0464 (4)
O10.89261 (14)0.26091 (18)0.57823 (7)0.0565 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0637 (14)0.0508 (12)0.0358 (11)0.0122 (12)0.0004 (10)0.0018 (9)
C20.0514 (12)0.0421 (11)0.0357 (10)0.0048 (10)0.0032 (9)0.0003 (9)
C30.0478 (12)0.0438 (11)0.0481 (12)0.0016 (10)0.0052 (9)0.0019 (10)
C40.0617 (16)0.0762 (18)0.0622 (16)0.0130 (14)0.0138 (13)0.0049 (13)
C50.0642 (17)0.0676 (18)0.096 (2)0.0189 (15)0.0049 (15)0.0087 (16)
C60.0462 (12)0.0525 (14)0.0751 (17)0.0040 (11)0.0019 (11)0.0090 (12)
C70.0393 (11)0.0441 (12)0.0510 (12)0.0054 (9)0.0002 (9)0.0073 (10)
C80.0660 (16)0.0733 (17)0.0450 (13)0.0065 (13)0.0107 (11)0.0185 (12)
C90.124 (3)0.109 (3)0.0433 (15)0.004 (2)0.0101 (17)0.0026 (16)
C100.128 (3)0.0701 (19)0.0522 (16)0.0028 (19)0.0050 (17)0.0112 (14)
C110.0770 (17)0.0523 (14)0.0456 (12)0.0077 (13)0.0011 (11)0.0012 (10)
Cl10.0849 (5)0.0712 (4)0.0483 (4)0.0035 (4)0.0106 (3)0.0133 (3)
Cl20.0799 (5)0.0866 (5)0.0523 (4)0.0188 (4)0.0131 (3)0.0133 (3)
Cl30.1183 (7)0.0656 (4)0.0574 (4)0.0201 (4)0.0095 (4)0.0172 (3)
N10.0499 (10)0.0484 (10)0.0410 (9)0.0006 (9)0.0037 (8)0.0088 (8)
O10.0538 (9)0.0763 (12)0.0393 (8)0.0105 (9)0.0023 (7)0.0092 (8)
Geometric parameters (Å, º) top
C1—C21.575 (3)C6—H6B0.97
C1—Cl11.763 (3)C7—N11.322 (3)
C1—Cl31.776 (2)C8—N11.485 (3)
C1—Cl21.778 (2)C8—C91.496 (4)
C2—O11.228 (3)C8—H8A0.97
C2—C31.412 (3)C8—H8B0.97
C3—C71.399 (3)C9—C101.474 (4)
C3—C41.528 (3)C9—H9A0.97
C4—C51.532 (4)C9—H9B0.97
C4—H4A0.97C10—C111.513 (4)
C4—H4B0.97C10—H10A0.97
C5—C61.517 (4)C10—H10B0.97
C5—H5A0.97C11—N11.465 (3)
C5—H5B0.97C11—H11A0.97
C6—C71.509 (3)C11—H11B0.97
C6—H6A0.97
C2—C1—Cl1111.19 (16)N1—C7—C3129.9 (2)
C2—C1—Cl3108.69 (16)N1—C7—C6118.9 (2)
Cl1—C1—Cl3108.19 (13)C3—C7—C6110.9 (2)
C2—C1—Cl2112.06 (16)N1—C8—C9104.1 (2)
Cl1—C1—Cl2107.27 (13)N1—C8—H8A110.9
Cl3—C1—Cl2109.35 (13)C9—C8—H8A110.9
O1—C2—C3126.2 (2)N1—C8—H8B110.9
O1—C2—C1114.77 (19)C9—C8—H8B110.9
C3—C2—C1118.9 (2)H8A—C8—H8B109
C7—C3—C2124.4 (2)C10—C9—C8105.9 (2)
C7—C3—C4107.8 (2)C10—C9—H9A110.6
C2—C3—C4127.2 (2)C8—C9—H9A110.6
C3—C4—C5102.7 (2)C10—C9—H9B110.6
C3—C4—H4A111.2C8—C9—H9B110.6
C5—C4—H4A111.2H9A—C9—H9B108.7
C3—C4—H4B111.2C9—C10—C11105.0 (2)
C5—C4—H4B111.2C9—C10—H10A110.7
H4A—C4—H4B109.1C11—C10—H10A110.7
C6—C5—C4105.2 (2)C9—C10—H10B110.7
C6—C5—H5A110.7C11—C10—H10B110.7
C4—C5—H5A110.7H10A—C10—H10B108.8
C6—C5—H5B110.7N1—C11—C10104.1 (2)
C4—C5—H5B110.7N1—C11—H11A110.9
H5A—C5—H5B108.8C10—C11—H11A110.9
C7—C6—C5104.0 (2)N1—C11—H11B110.9
C7—C6—H6A110.9C10—C11—H11B110.9
C5—C6—H6A110.9H11A—C11—H11B109
C7—C6—H6B110.9C7—N1—C11125.44 (19)
C5—C6—H6B110.9C7—N1—C8122.4 (2)
H6A—C6—H6B109C11—N1—C8110.40 (19)
Cl1—C1—C2—O121.2 (2)C2—C3—C7—C6160.4 (2)
Cl3—C1—C2—O197.8 (2)C4—C3—C7—C611.4 (3)
Cl2—C1—C2—O1141.23 (18)C5—C6—C7—N1177.4 (2)
Cl1—C1—C2—C3162.98 (17)C5—C6—C7—C38.2 (3)
Cl3—C1—C2—C378.0 (2)N1—C8—C9—C1025.6 (3)
Cl2—C1—C2—C342.9 (3)C8—C9—C10—C1133.3 (4)
O1—C2—C3—C713.1 (4)C9—C10—C11—N127.4 (3)
C1—C2—C3—C7171.5 (2)C3—C7—N1—C1113.8 (4)
O1—C2—C3—C4157.1 (2)C6—C7—N1—C11159.4 (2)
C1—C2—C3—C418.2 (3)C3—C7—N1—C8177.4 (2)
C7—C3—C4—C526.0 (3)C6—C7—N1—C84.2 (3)
C2—C3—C4—C5145.6 (2)C10—C11—N1—C7153.6 (2)
C3—C4—C5—C630.5 (3)C10—C11—N1—C811.7 (3)
C4—C5—C6—C724.2 (3)C9—C8—N1—C7174.1 (2)
C2—C3—C7—N126.0 (4)C9—C8—N1—C118.3 (3)
C4—C3—C7—N1162.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cl30.972.733.434 (3)130
C6—H6B···O1i0.972.543.502 (3)171
C8—H8B···O1ii0.972.503.388 (4)152
C11—H11B···O10.972.322.792 (3)109
Symmetry codes: (i) x+2, y+1, z1; (ii) x+1/2, y+1/2, z1.

Experimental details

Crystal data
Chemical formulaC11H14Cl3NO
Mr282.58
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)11.4236 (10), 10.2623 (9), 21.899 (3)
V3)2567.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.48 × 0.48 × 0.12
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
ψ scan (North et al., 1968)
Tmin, Tmax0.732, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
5032, 2597, 1823
Rint0.029
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.124, 1.08
No. of reflections2597
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.28

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
C1—C21.575 (3)C5—C61.517 (4)
C1—Cl11.763 (3)C6—C71.509 (3)
C1—Cl31.776 (2)C7—N11.322 (3)
C1—Cl21.778 (2)C8—N11.485 (3)
C2—O11.228 (3)C8—C91.496 (4)
C2—C31.412 (3)C9—C101.474 (4)
C3—C71.399 (3)C10—C111.513 (4)
C3—C41.528 (3)C11—N11.465 (3)
C4—C51.532 (4)
C2—C1—Cl1111.19 (16)N1—C7—C3129.9 (2)
C2—C1—Cl3108.69 (16)N1—C7—C6118.9 (2)
C2—C1—Cl2112.06 (16)C3—C7—C6110.9 (2)
O1—C2—C3126.2 (2)N1—C8—C9104.1 (2)
O1—C2—C1114.77 (19)C10—C9—C8105.9 (2)
C7—C3—C2124.4 (2)C9—C10—C11105.0 (2)
C2—C3—C4127.2 (2)N1—C11—C10104.1 (2)
C3—C4—C5102.7 (2)C7—N1—C11125.44 (19)
C6—C5—C4105.2 (2)C7—N1—C8122.4 (2)
C7—C6—C5104.0 (2)C11—N1—C8110.40 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cl30.972.733.434 (3)130
C6—H6B···O1i0.972.543.502 (3)171
C8—H8B···O1ii0.972.503.388 (4)152
C11—H11B···O10.972.322.792 (3)109
Symmetry codes: (i) x+2, y+1, z1; (ii) x+1/2, y+1/2, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds