Download citation
Download citation
link to html
The central Zn atom in the structure of the title compound, [ZnCl2(C4H10S2)], exhibits a distorted tetrahedral geometry and is coordinated by two Cl and two S atoms, with Zn—Cl distances of 2.203 (2) and 2.212 (2) Å, and Zn—S distances of 2.390 (2) and 2.459 (2) Å. The angles Cl—Zn—Cl and S—Zn—S are 123.28 (7) and 90.68 (6)°, respectively, while the Cl—Zn—S angles are in the range 106.13 (6)–112.69 (7)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803009498/na6229sup1.cif
Contains datablocks global, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803009498/na62292sup2.hkl
Contains datablock 2

CCDC reference: 214771

Key indicators

  • Single-crystal X-ray study
  • T = 170 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.040
  • wR factor = 0.117
  • Data-to-parameter ratio = 20.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Dithio compounds are of considerable interest with respect to their use in preparing conducting materials from organic substrates and for chelation of metal species. In this paper, we report a rather unusual preparation of [1,2-bis(methylthio)ethane]dichlorozinc(II), (2), from the commonly available solvent 1,2-dichloroethane and dimethyl disulfide (DMDS), using a ZnCl2-impregnated montmorillonite clay. Previously (Clark et al., 1996), we have reported the use of such clay materials to catalyze the electrophilic substitution of aromatics by –SMe groups. The mechanism of those reactions likely occurs by coordination of one S atom of DMDS to the ZnCl2 adsorbed on the clay surface, rendering the other S atom of DMDS electrophilic, followed by attack of the aromatic at that electrophilic sulfur. In the present case of the formation of (2), it is probable that the Cl of the dichloroethane solvent coordinates at the ZnCl2 adsorbed at the clay surface followed by attack of DMDS at the now electrophilic carbon bonded to the adsorbed Cl. A repeat of this process at the second C—Cl center results in the dithio compound (1), which then is able to chelate the ZnCl2 to form complex (2).

The crystal structure is composed of discrete monomeric molecules of (2) (Fig. 1) separated by normal van der Waals distances. The Zn atom is coordinated to two Cl and two S atoms, with Zn—Cl distances of 2.203 (2) and 2.212 (2) Å, and Zn—S distances of 2.390 (2) and 2.459 (2) Å. The angles Cl—Zn—Cl and S—Zn—S are 123.28 (7) and 90.68 (6)°, respectively, while the angles Cl—Zn—S are in the range 106.13 (6)–112.69 (7)°. The geometry around the Zn atom is distorted tetrahedral. A similar distorted tetrahedral geometry has been reported for the structures of (N,N'-dimethyldithiooxamide)dichlorozinc(II) (Antolini et al., 1987), trans-[2,3-bis(methylthio)hexane-S,S']dichlorozinc(II) (Parvez et al., 1997), trans-[1,2-bis(methylthio)cyclohexane-S,S']dichlorozinc(II) (Parvez et al., 1997) and cis-[5,6-bis(methylthio)-1,3-cycloheptadiene-S,S']dichlorozinc(II) (Parvez et al., 1997).

The S—C distances in (2) range between 1.801 (7) and 1.828 (6) Å, which are in agreement with the reported values (Orpen et al., 1994). The Zn1/S1/S2/C2/C3 five-membered ring adopts a C3-envelope conformation with C3 0.587 (9) Å out of the plane formed by the rest of the atoms in the ring; the maximum deviation of any atom from the mean plane is 0.098 (2) Å.

Experimental top

DMDS (5.64 g, 0.06 mol) was added to a stirred mixture of mesitylene (1.2 g, 0.01 mol) and K10/ZnCl2 (5 wt% ZnCl2) (10 g) (Clark et al., 1994) in dichloroethane (40 ml). After heating the mixture under reflux for 18 h, the reaction mixture was cooled and the clay catalyst was removed by filtration. Evaporation of the dichloroethane, mesitylene and excess DMDS left a semi-solid residue which afforded colorless crystals of (2) on crystallization from ethanol [m.p. > 373 K (decomposition)].

Refinement top

The H atoms were located from a difference Fourier map and were included in the refinement at idealized positions with isotropic displacement parameters 1.5 (CH3) and 1.2 (CH2) times the equivalent displacement parameters of the atoms to which they were bonded, with C—H distances of 0.98 and 0.99 Å, respectively.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (2), with displacement ellipsoids plotted at the 50% probability level.
[1,2-Bis(methylthio)ethane-S,S']dichlorozinc(II) top
Crystal data top
[ZnCl2(C4H10S2)]F(000) = 520
Mr = 258.51Dx = 1.779 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.3110 (14) Åθ = 10.0–15.0°
b = 17.5535 (15) ŵ = 3.45 mm1
c = 7.7836 (15) ÅT = 170 K
β = 104.984 (14)°Prism, colorless
V = 964.9 (3) Å30.35 × 0.26 × 0.15 mm
Z = 4
Data collection top
Rigaku AFC-6S
diffractometer
1123 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 25.0°, θmin = 3.1°
ω/2θ scansh = 08
Absorption correction: empirical (using intensity measurements)
via ψ scans (North et al., 1968)
k = 020
Tmin = 0.378, Tmax = 0.625l = 98
1834 measured reflections3 standard reflections every 200 reflections
1706 independent reflections intensity decay: 4.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.043P)2 + 1.42P]
where P = (Fo2 + 2Fc2)/3
1706 reflections(Δ/σ)max < 0.001
84 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[ZnCl2(C4H10S2)]V = 964.9 (3) Å3
Mr = 258.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3110 (14) ŵ = 3.45 mm1
b = 17.5535 (15) ÅT = 170 K
c = 7.7836 (15) Å0.35 × 0.26 × 0.15 mm
β = 104.984 (14)°
Data collection top
Rigaku AFC-6S
diffractometer
1123 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scans (North et al., 1968)
Rint = 0.066
Tmin = 0.378, Tmax = 0.6253 standard reflections every 200 reflections
1834 measured reflections intensity decay: 4.9%
1706 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.10Δρmax = 0.62 e Å3
1706 reflectionsΔρmin = 0.80 e Å3
84 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.49297 (10)0.10748 (4)0.14492 (10)0.0251 (2)
Cl10.7031 (2)0.01441 (10)0.2145 (2)0.0315 (4)
Cl20.4900 (3)0.19138 (10)0.0663 (2)0.0363 (4)
S10.5219 (2)0.18123 (10)0.4192 (2)0.0278 (4)
S20.1813 (2)0.06779 (9)0.1484 (2)0.0227 (4)
C10.4511 (10)0.2766 (4)0.3401 (9)0.0339 (16)
H1A0.34190.27370.23620.051*
H1B0.55640.30190.30670.051*
H1C0.41670.30570.43450.051*
C20.3094 (9)0.1454 (4)0.4745 (8)0.0267 (14)
H2A0.34110.09670.53960.032*
H2B0.27220.18210.55580.032*
C30.1402 (9)0.1322 (4)0.3160 (8)0.0293 (15)
H3A0.09930.18200.25910.035*
H3B0.03450.11190.36030.035*
C40.2174 (10)0.0219 (4)0.2648 (10)0.0329 (16)
H4A0.30230.01450.38360.049*
H4B0.27410.05840.19840.049*
H4C0.09550.04160.27570.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0216 (4)0.0266 (4)0.0279 (4)0.0007 (3)0.0078 (3)0.0033 (3)
Cl10.0241 (8)0.0334 (9)0.0363 (9)0.0076 (7)0.0067 (7)0.0015 (7)
Cl20.0448 (10)0.0335 (10)0.0300 (8)0.0118 (8)0.0085 (7)0.0050 (8)
S10.0221 (8)0.0297 (9)0.0263 (8)0.0002 (7)0.0032 (6)0.0022 (7)
S20.0201 (8)0.0232 (8)0.0230 (7)0.0011 (6)0.0023 (6)0.0010 (7)
C10.033 (4)0.026 (4)0.040 (4)0.001 (3)0.005 (3)0.005 (3)
C20.028 (3)0.028 (4)0.024 (3)0.003 (3)0.006 (3)0.002 (3)
C30.025 (3)0.037 (4)0.026 (3)0.002 (3)0.007 (3)0.004 (3)
C40.028 (4)0.025 (4)0.044 (4)0.001 (3)0.005 (3)0.005 (3)
Geometric parameters (Å, º) top
Zn1—Cl22.203 (2)C1—H1C0.9800
Zn1—Cl12.212 (2)C2—C31.522 (9)
Zn1—S22.390 (2)C2—H2A0.9900
Zn1—S12.459 (2)C2—H2B0.9900
S1—C11.813 (7)C3—H3A0.9900
S1—C21.828 (6)C3—H3B0.9900
S2—C41.801 (7)C4—H4A0.9800
S2—C31.809 (7)C4—H4B0.9800
C1—H1A0.9800C4—H4C0.9800
C1—H1B0.9800
Cl2—Zn1—Cl1123.28 (7)C3—C2—S1115.1 (4)
Cl2—Zn1—S2112.21 (7)C3—C2—H2A108.5
Cl1—Zn1—S2112.69 (7)S1—C2—H2A108.5
Cl2—Zn1—S1106.14 (7)C3—C2—H2B108.5
Cl1—Zn1—S1106.13 (6)S1—C2—H2B108.5
S2—Zn1—S190.68 (6)H2A—C2—H2B107.5
C1—S1—C2102.3 (3)C2—C3—S2115.3 (5)
C1—S1—Zn1103.8 (2)C2—C3—H3A108.4
C2—S1—Zn197.8 (2)S2—C3—H3A108.4
C4—S2—C3102.3 (3)C2—C3—H3B108.4
C4—S2—Zn1104.1 (2)S2—C3—H3B108.4
C3—S2—Zn199.4 (2)H3A—C3—H3B107.5
S1—C1—H1A109.5S2—C4—H4A109.5
S1—C1—H1B109.5S2—C4—H4B109.5
H1A—C1—H1B109.5H4A—C4—H4B109.5
S1—C1—H1C109.5S2—C4—H4C109.5
H1A—C1—H1C109.5H4A—C4—H4C109.5
H1B—C1—H1C109.5H4B—C4—H4C109.5
Cl2—Zn1—S1—C118.6 (3)Cl2—Zn1—S2—C395.5 (2)
Cl1—Zn1—S1—C1151.3 (2)Cl1—Zn1—S2—C3120.1 (2)
S2—Zn1—S1—C194.8 (2)S1—Zn1—S2—C312.3 (2)
Cl2—Zn1—S1—C2123.3 (2)C1—S1—C2—C368.4 (6)
Cl1—Zn1—S1—C2103.9 (2)Zn1—S1—C2—C337.6 (5)
S2—Zn1—S1—C210.0 (2)S1—C2—C3—S257.0 (7)
Cl2—Zn1—S2—C4159.2 (3)C4—S2—C3—C266.7 (6)
Cl1—Zn1—S2—C414.8 (3)Zn1—S2—C3—C240.1 (5)
S1—Zn1—S2—C493.1 (3)

Experimental details

Crystal data
Chemical formula[ZnCl2(C4H10S2)]
Mr258.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)170
a, b, c (Å)7.3110 (14), 17.5535 (15), 7.7836 (15)
β (°) 104.984 (14)
V3)964.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.45
Crystal size (mm)0.35 × 0.26 × 0.15
Data collection
DiffractometerRigaku AFC-6S
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scans (North et al., 1968)
Tmin, Tmax0.378, 0.625
No. of measured, independent and
observed [I > 2σ(I)] reflections
1834, 1706, 1123
Rint0.066
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.10
No. of reflections1706
No. of parameters84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.80

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1994), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Zn1—Cl22.203 (2)S1—C11.813 (7)
Zn1—Cl12.212 (2)S1—C21.828 (6)
Zn1—S22.390 (2)S2—C41.801 (7)
Zn1—S12.459 (2)S2—C31.809 (7)
Cl2—Zn1—Cl1123.28 (7)C1—S1—C2102.3 (3)
Cl2—Zn1—S2112.21 (7)C1—S1—Zn1103.8 (2)
Cl1—Zn1—S2112.69 (7)C2—S1—Zn197.8 (2)
Cl2—Zn1—S1106.14 (7)C4—S2—C3102.3 (3)
Cl1—Zn1—S1106.13 (6)C4—S2—Zn1104.1 (2)
S2—Zn1—S190.68 (6)C3—S2—Zn199.4 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds