Download citation
Download citation
link to html
In the title mol­ecule, C14H14O4S, the dihedral angle between the mean planes of the 4-tolyl and 4-methoxy­phenyl rings is 7.2 (1)°. There are weak intermolecular C—H...O hydrogen bonds which generate rings of motifs R12(6), R12(9) and R21(4). There are also C—H...π interactions which stack the mol­ecules in layers in the crystal lattice.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803010444/ob6243sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803010444/ob6243Isup2.hkl
Contains datablock I

CCDC reference: 214837

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.058
  • wR factor = 0.128
  • Data-to-parameter ratio = 13.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.736 0.974 Tmin' and Tmax expected: 0.900 0.974 RR' = 0.818 Please check that your absorption correction is appropriate.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

p-Toluenesulfonates are used in monitoring the merging of lipids (Yachi et al., 1989), studying membrane fusion during acrosome reaction (Spungin et al., 1992), development of immunoaffinity chromatography for the purification of human coagulation factor (Tharakan et al., 1992), chemical studies on viruses (Alford et al., 1991), development of technology for linking photosensitizer to model monoclonal antibody (Jiang et al., 1990) and chemical modification of sigma sub units of the E. coli RNA polymerase (Narayanan & Krakow, 1983). An X-ray study of the title compound, (I), was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues.

A search of Version 5.23 (July 2002 updates) of the Cambridge Structural Database (Allen, 2002) revealed 16 structures (with the following refcodes: KAWDAN, FIXCAQ, NEDXUP, NEDYAW, NEDYIE, NUNCII, RASSOT, RELVUZ, SIMVUF, TCPTOS, TEBFOV, TMPDTS, TSMIPH, WOHCUR, ZZZBDA10 and MIWHIJ) that are closely related to the title compound (I). The S—C, S—O and SO bond lengths (Table 1) are comparable to those found in these structures. The dihedral angle between the mean planes of the 4-tolyl and the 4-methoxyphenyl rings is 7.2 (1)°. This shows their near coplanar orientation similar to that found between the mean planes of the 4-tolyl and 2,4-dinitrophenyl rings in 2,4-dinitrophenyl 4-toluenesulfonate (Vembu et al., 2003a) and in contrast to the non-coplanar orientation of 4-tolyl and 2-chlorophenyl rings in 2-chlorophenyl 4-toluenesulfonate (Vembu et al., 2003b) and the non-coplanar orientation of the 4-tolyl and quinoline rings in 8-tosyloxyquinoline (Vembu et al., 2003c).

The crystal structure of (I) is stabilized by weak C—H···O interactions (Table 2). The range of the H···O distances agree with those found for weak C—H···O bonds (Desiraju & Steiner, 1999). The C3—H3···O1iii and C1—H1C···O1iii interactions constitute a pair of bifurcated acceptor bonds involving H atoms of the neighbouring 4-tolyl moiety (see Table 2 for symmetry code). They generate a ring of graph set (Etter, 1990; Bernstein et al., 1995) motif R12(6). The C1—H1C···O1iii and C1—H1C···O2iii interactions form a pair of bifurcated donor bonds involving the sulfonyl O atoms. They generate a ring of graph set motif R21(4). The H1C···O1iii and H1C···O2iii distances differ by 0.10 Å. The resulting configuration is best regarded as a three center symmetrical hydrogen-bonded chelate (Desiraju, 1989) and is also observed in 2-chlorophenyl 4-toluenesulfonate (Vembu et al., 2003b), 8-tosyloxyquinoline (Vembu et al., 2003c) and 4-dimethylaminopyridinium picrate (Vembu et al., 2003 d). The inter-fusion of R12(6) and R21(4) motifs generate a ring of graph set motif R22(8). The C6—H6···O2iv and C13—H13···O2iv interactions constitute a pair of bifurcated acceptor bonds involving the H atoms of the neighbouring 4-tolyl and 4-methoxyphenyl moieties (see Table 2 for symmetry code). They generate a ring of graph-set motif R12(9) (Fig. 2).

The supramolecular aggregation is completed by the presence of four C—H···π interactions which pack the molecules in a slip stack along the b axis (Fig. 3). The geometry of the C—H···π interactions obtained from PLATON (Spek, 1998) is given in Table 2, where Cg1 and Cg2 are the centroids of the 4-tolyl and 4-methoxyphenyl rings, respectively.

Experimental top

4-Toluenesulfonyl chloride (4.7 mmol) dissolved in acetone (4 ml) was added dropwise to 4-methoxyphenol (4 mmol) in aqueous NaOH (2.5 ml, 10%) with vigorous shaking. The precipitated 4-methoxyphenyl 4-toluenesulfonate (2.7 mmol, yield 67%) was filtered off and recrystallized from diethyl ether.

Refinement top

All the H atoms were located in the difference Fourier map and their positional coordinates and isotropic displacement paramaters were refined. The C—H bond lengths are in the range 0.89 (3)–0.99 (3) Å, the H—C—H angles for the methyl group are in the range 98 (3)–112 (2)° and the C—C—H angles for the aromatic rings are in the range 118.1 (2)–121.9 (2)°.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, (I), showing 50% probablity ellipsoids.
[Figure 2] Fig. 2. Diagram showing the some of the C—H···O interactions.
[Figure 3] Fig. 3. Projection of the crystal structure of (I) along the b axis.
4-Methoxyphenyl 4-toluenesulfonate top
Crystal data top
C14H14O4SDx = 1.439 Mg m3
Mr = 278.31Melting point = 72–73 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.778 (5) ÅCell parameters from 5896 reflections
b = 5.6665 (18) Åθ = 2.6–27.6°
c = 16.133 (5) ŵ = 0.26 mm1
β = 108.049 (5)°T = 100 K
V = 1284.6 (7) Å3Plate, colorless
Z = 40.40 × 0.20 × 0.10 mm
F(000) = 584
Data collection top
Bruker SMART CCD area-detector
diffractometer
2956 independent reflections
Radiation source: fine-focus sealed tube2687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 27.7°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.736, Tmax = 0.974k = 77
10615 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128All H-atom parameters refined
S = 1.24 w = 1/[σ2(Fo2) + (0.0403P)2 + 1.3915P]
where P = (Fo2 + 2Fc2)/3
2956 reflections(Δ/σ)max = 0.002
228 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C14H14O4SV = 1284.6 (7) Å3
Mr = 278.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.778 (5) ŵ = 0.26 mm1
b = 5.6665 (18) ÅT = 100 K
c = 16.133 (5) Å0.40 × 0.20 × 0.10 mm
β = 108.049 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2956 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2687 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 0.974Rint = 0.042
10615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.128All H-atom parameters refined
S = 1.24Δρmax = 0.58 e Å3
2956 reflectionsΔρmin = 0.45 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.29343 (4)0.31557 (10)1.01208 (3)0.01666 (16)
O10.36007 (12)0.3968 (3)0.97108 (10)0.0222 (4)
O20.27097 (13)0.0713 (3)1.00823 (11)0.0255 (4)
O30.19711 (11)0.4602 (3)0.97292 (10)0.0186 (4)
O40.06857 (12)0.5138 (3)0.61427 (10)0.0204 (4)
C10.4361 (2)0.6151 (5)1.38654 (16)0.0244 (5)
C20.39454 (16)0.5464 (4)1.29296 (15)0.0169 (5)
C30.34358 (17)0.3382 (4)1.26940 (15)0.0186 (5)
C40.30937 (17)0.2696 (4)1.18300 (15)0.0170 (5)
C50.32683 (16)0.4115 (4)1.12017 (14)0.0160 (4)
C60.37595 (17)0.6218 (4)1.14139 (15)0.0186 (5)
C70.40901 (17)0.6875 (4)1.22803 (15)0.0189 (5)
C80.16490 (16)0.4770 (4)0.88075 (14)0.0158 (5)
C90.10953 (16)0.2981 (4)0.83259 (15)0.0171 (5)
C100.07859 (17)0.3181 (4)0.74319 (15)0.0170 (5)
C110.10301 (16)0.5126 (4)0.70274 (14)0.0160 (5)
C120.15840 (17)0.6912 (4)0.75221 (15)0.0181 (5)
C130.18938 (17)0.6716 (4)0.84253 (15)0.0186 (5)
C140.0923 (2)0.7116 (5)0.56985 (16)0.0257 (6)
H1A0.438 (3)0.775 (8)1.396 (3)0.064 (12)*
H1B0.502 (3)0.586 (7)1.404 (2)0.060 (11)*
H1C0.407 (3)0.538 (7)1.423 (3)0.065 (12)*
H30.332 (2)0.249 (5)1.311 (2)0.028 (8)*
H40.2766 (19)0.126 (5)1.1668 (17)0.020 (7)*
H60.3870 (18)0.717 (5)1.0984 (18)0.018 (7)*
H70.4447 (19)0.829 (5)1.2449 (18)0.020 (7)*
H90.0927 (19)0.165 (5)0.8590 (18)0.020 (7)*
H100.042 (2)0.207 (5)0.7107 (19)0.025 (7)*
H120.1737 (19)0.819 (5)0.7264 (17)0.017 (7)*
H130.2274 (19)0.788 (5)0.8764 (18)0.019 (7)*
H14A0.160 (2)0.720 (5)0.5829 (19)0.025 (7)*
H14B0.060 (2)0.680 (5)0.508 (2)0.028 (8)*
H14C0.065 (2)0.857 (5)0.5862 (18)0.025 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0244 (3)0.0148 (3)0.0106 (3)0.0031 (2)0.0051 (2)0.0009 (2)
O10.0254 (9)0.0279 (9)0.0149 (8)0.0048 (7)0.0087 (7)0.0016 (7)
O20.0412 (11)0.0161 (9)0.0177 (9)0.0022 (8)0.0068 (8)0.0025 (7)
O30.0237 (9)0.0209 (8)0.0111 (8)0.0037 (7)0.0053 (6)0.0012 (6)
O40.0282 (9)0.0206 (9)0.0113 (8)0.0039 (7)0.0048 (7)0.0006 (6)
C10.0309 (14)0.0265 (14)0.0152 (12)0.0039 (11)0.0064 (10)0.0049 (10)
C20.0182 (11)0.0172 (11)0.0154 (11)0.0028 (9)0.0057 (9)0.0019 (9)
C30.0239 (12)0.0194 (12)0.0146 (11)0.0006 (9)0.0092 (9)0.0030 (9)
C40.0225 (12)0.0134 (11)0.0160 (11)0.0024 (9)0.0075 (9)0.0001 (9)
C50.0208 (11)0.0146 (11)0.0119 (10)0.0021 (9)0.0040 (8)0.0011 (8)
C60.0259 (12)0.0147 (11)0.0166 (11)0.0011 (9)0.0083 (9)0.0042 (9)
C70.0238 (12)0.0135 (11)0.0195 (11)0.0020 (9)0.0069 (9)0.0038 (9)
C80.0200 (11)0.0167 (11)0.0100 (10)0.0047 (9)0.0036 (8)0.0011 (8)
C90.0211 (11)0.0146 (11)0.0174 (11)0.0005 (9)0.0083 (9)0.0018 (9)
C100.0202 (11)0.0129 (11)0.0181 (11)0.0001 (9)0.0064 (9)0.0038 (9)
C110.0177 (11)0.0166 (11)0.0139 (10)0.0031 (9)0.0050 (8)0.0000 (9)
C120.0217 (12)0.0133 (11)0.0191 (11)0.0017 (9)0.0059 (9)0.0008 (9)
C130.0227 (12)0.0133 (11)0.0186 (11)0.0001 (9)0.0045 (9)0.0042 (9)
C140.0363 (15)0.0242 (14)0.0158 (12)0.0039 (11)0.0068 (10)0.0043 (10)
Geometric parameters (Å, º) top
S—O21.4200 (19)C5—C61.382 (3)
S—O11.4223 (18)C6—C71.381 (3)
S—O31.5936 (17)C6—H60.93 (3)
S—C51.745 (2)C7—H70.95 (3)
O3—C81.417 (3)C8—C131.366 (3)
O4—C111.359 (3)C8—C91.381 (3)
O4—C141.432 (3)C9—C101.376 (3)
C1—C21.495 (3)C9—H90.94 (3)
C1—H1A0.92 (5)C10—C111.385 (3)
C1—H1B0.95 (4)C10—H100.89 (3)
C1—H1C0.94 (4)C11—C121.388 (3)
C2—C71.386 (3)C12—C131.390 (3)
C2—C31.388 (3)C12—H120.90 (3)
C3—C41.383 (3)C13—H130.93 (3)
C3—H30.90 (3)C14—H14A0.96 (3)
C4—C51.380 (3)C14—H14B0.99 (3)
C4—H40.94 (3)C14—H14C0.98 (3)
O2—S—O1118.77 (11)C5—C6—H6120.9 (17)
O2—S—O3108.41 (11)C6—C7—C2121.4 (2)
O1—S—O3108.13 (10)C6—C7—H7120.5 (17)
O2—S—C5109.71 (11)C2—C7—H7118.1 (17)
O1—S—C5109.97 (11)C13—C8—C9122.2 (2)
O3—S—C5100.21 (10)C13—C8—O3118.6 (2)
C8—O3—S114.78 (13)C9—C8—O3119.3 (2)
C11—O4—C14117.35 (18)C10—C9—C8118.4 (2)
C2—C1—H1A114 (3)C10—C9—H9119.7 (17)
C2—C1—H1B109 (2)C8—C9—H9121.9 (16)
H1A—C1—H1B98 (3)C9—C10—C11120.6 (2)
C2—C1—H1C113 (3)C9—C10—H10120.3 (19)
H1A—C1—H1C110 (4)C11—C10—H10119.1 (19)
H1B—C1—H1C111 (3)O4—C11—C10115.6 (2)
C7—C2—C3118.7 (2)O4—C11—C12124.3 (2)
C7—C2—C1120.1 (2)C10—C11—C12120.2 (2)
C3—C2—C1121.1 (2)C11—C12—C13119.3 (2)
C4—C3—C2120.9 (2)C11—C12—H12120.6 (17)
C4—C3—H3120 (2)C13—C12—H12120.2 (17)
C2—C3—H3119.0 (19)C8—C13—C12119.4 (2)
C5—C4—C3118.9 (2)C8—C13—H13120.3 (17)
C5—C4—H4119.9 (16)C12—C13—H13120.3 (17)
C3—C4—H4121.2 (16)O4—C14—H14A109.3 (18)
C4—C5—C6121.6 (2)O4—C14—H14B104.7 (17)
C4—C5—S119.54 (18)H14A—C14—H14B112 (2)
C6—C5—S118.71 (17)O4—C14—H14C109.7 (17)
C7—C6—C5118.5 (2)H14A—C14—H14C112 (2)
C7—C6—H6120.7 (17)H14B—C14—H14C109 (2)
O2—S—O3—C882.6 (2)C3—C2—C7—C61.7 (4)
O1—S—O3—C847.4 (2)C1—C2—C7—C6176.4 (2)
C5—S—O3—C8162.5 (2)S—O3—C8—C1394.7 (2)
C7—C2—C3—C41.3 (4)S—O3—C8—C985.8 (2)
C1—C2—C3—C4176.7 (2)C13—C8—C9—C100.2 (3)
C2—C3—C4—C50.1 (4)O3—C8—C9—C10179.7 (2)
C3—C4—C5—C61.2 (4)C8—C9—C10—C110.4 (3)
C3—C4—C5—S174.4 (2)C14—O4—C11—C10179.9 (2)
O2—S—C5—C413.4 (2)C14—O4—C11—C120.8 (3)
O1—S—C5—C4145.8 (2)C9—C10—C11—O4180.0 (2)
O3—S—C5—C4100.5 (2)C9—C10—C11—C120.6 (3)
O2—S—C5—C6162.4 (2)O4—C11—C12—C13179.7 (2)
O1—S—C5—C630.0 (2)C10—C11—C12—C130.4 (3)
O3—S—C5—C683.7 (2)C9—C8—C13—C120.4 (4)
C4—C5—C6—C70.9 (4)O3—C8—C13—C12180.0 (2)
S—C5—C6—C7174.8 (2)C11—C12—C13—C80.1 (3)
C5—C6—C7—C20.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.92 (5)2.67 (4)3.424 (3)141 (3)
C1—H1B···O1ii0.95 (4)2.96 (4)3.551 (3)122 (3)
C1—H1C···O1iii0.94 (4)2.73 (4)3.534 (4)143 (3)
C1—H1C···O2iii0.94 (4)2.83 (4)3.728 (3)160 (3)
C3—H3···O1iii0.90 (3)2.61 (3)3.454 (3)155 (2)
C6—H6···O2iv0.93 (3)2.75 (3)3.383 (3)126 (2)
C9—H9···O4v0.94 (3)2.69 (3)3.414 (3)135 (2)
C13—H13···O2iv0.93 (3)2.58 (3)3.426 (3)152 (2)
C14—H14A···O2vi0.96 (3)2.84 (3)3.486 (4)125 (2)
C14—H14A···O3vii0.96 (3)2.71 (3)3.131 (3)107 (2)
C14—H14B···O4viii0.99 (3)2.53 (3)3.425 (3)152 (2)
C3—H3···Cg2ix0.90 (3)3.173.742124
C7—H7···Cg1x0.95 (3)2.883.644138
C10—H10···Cg2xi0.89 (3)2.853.527134
C12—H12···Cg1vii0.90 (3)3.093.781135
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+5/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x, y1/2, z+3/2; (vi) x, y+1/2, z1/2; (vii) x, y+3/2, z1/2; (viii) x, y+1, z+1; (ix) x, y+5/2, z+1/2; (x) x+1, y1/2, z+3/2; (xi) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H14O4S
Mr278.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.778 (5), 5.6665 (18), 16.133 (5)
β (°) 108.049 (5)
V3)1284.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.736, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
10615, 2956, 2687
Rint0.042
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.128, 1.24
No. of reflections2956
No. of parameters228
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.58, 0.45

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
S—O21.4200 (19)O3—C81.417 (3)
S—O11.4223 (18)O4—C111.359 (3)
S—O31.5936 (17)O4—C141.432 (3)
S—C51.745 (2)C1—C21.495 (3)
O2—S—O1118.77 (11)O1—S—C5109.97 (11)
O2—S—O3108.41 (11)O3—S—C5100.21 (10)
O1—S—O3108.13 (10)C8—O3—S114.78 (13)
O2—S—C5109.71 (11)C11—O4—C14117.35 (18)
C5—S—O3—C8162.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.92 (5)2.67 (4)3.424 (3)141 (3)
C1—H1B···O1ii0.95 (4)2.96 (4)3.551 (3)122 (3)
C1—H1C···O1iii0.94 (4)2.73 (4)3.534 (4)143 (3)
C1—H1C···O2iii0.94 (4)2.83 (4)3.728 (3)160 (3)
C3—H3···O1iii0.90 (3)2.61 (3)3.454 (3)155 (2)
C6—H6···O2iv0.93 (3)2.75 (3)3.383 (3)126 (2)
C9—H9···O4v0.94 (3)2.69 (3)3.414 (3)135 (2)
C13—H13···O2iv0.93 (3)2.58 (3)3.426 (3)152 (2)
C14—H14A···O2vi0.96 (3)2.84 (3)3.486 (4)125 (2)
C14—H14A···O3vii0.96 (3)2.71 (3)3.131 (3)107 (2)
C14—H14B···O4viii0.99 (3)2.53 (3)3.425 (3)152 (2)
C3—H3···Cg2ix0.90 (3)3.173.742124
C7—H7···Cg1x0.95 (3)2.883.644138
C10—H10···Cg2xi0.89 (3)2.853.527134
C12—H12···Cg1vii0.90 (3)3.093.781135
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+5/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x, y1/2, z+3/2; (vi) x, y+1/2, z1/2; (vii) x, y+3/2, z1/2; (viii) x, y+1, z+1; (ix) x, y+5/2, z+1/2; (x) x+1, y1/2, z+3/2; (xi) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds