Download citation
Download citation
link to html
The new molecular metal chalcogenide, (enH)[Ni(en)3][SbSe4] or (C2H9N2)[Ni(C2H8N2)3][SbSe4], has been synth­esized by a solvothermal reaction in an ethyl­enedi­amine/methanol solution at 443 K. The structure contains tetrahedral SbSe43- anions and octahedral [Ni(en)3]2+ cations, as well as the monoprotonated ethylenediamine cation [enH]+.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803009243/tk6104sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803009243/tk6104Isup2.hkl
Contains datablock I

CCDC reference: 214791

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.054
  • wR factor = 0.088
  • Data-to-parameter ratio = 24.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_213 Alert C Atom C11 has ADP max/min Ratio ........... 3.20 prolate PLAT_360 Alert C Short C(sp3)-C(sp3) Bond C(11) - C(12) = 1.42 Ang. PLAT_420 Alert C D-H Without Acceptor N(11) - H(11A) ? PLAT_420 Alert C D-H Without Acceptor N(15) - H(15A) ? PLAT_420 Alert C D-H Without Acceptor N(15) - H(15B) ? PLAT_420 Alert C D-H Without Acceptor N(22) - H(22C) ? General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.769 Tmax scaled 0.769 Tmin scaled 0.587
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
6 Alert Level C = Please check

Comment top

Chalcogenidometallates with open frameworks have attracted considerable interest as possible zeolite-like materials, of which highly interesting properties could be expected. In recent decades, a large number of thioantimonates exhibiting different degrees of fused SbxSy anionic fragments have been reported (Sheldrick & Wachhold, 1997, 1998). In these compounds, the connections between of the complex anions lead to diverse structures. Compounds with one-, two-, and three-dimensional structures have been isolated and characterized. In contrast to the thioantimonates, the chemistry of heavier chalcogenoantimonates is less developed probably due to the ease of hydrolysis of seleno- and telluro-antimonates. By using solvothermal synthesis, the structures of [Mn(en)3]2·[Mn4(en)9(SbSe4)4]·2H2O (en is 1,2-ethylenediamine; Bensch et al., 1997), [enH][Mn(en)3][SbSe4] (Wendland & Bensch, 1998), Cu2SbSe3.0.5 en and Cu2SbSe3.en (Chen et al., 1998), [Fe(en)3]2(Sb2Se5) (Chen et al., 2000) and [enH][Fe(en)3][SbSe4] (Girard & Li, 1998) have been reported. In our recent investigations, we have obtained a new complex, namely enH·Ni(en)3·SbSe4, (I), which, to our best knowledge, is the first selenoantimonates containing Ni(en)32+ as a structure-directing agent. Herein, we report the synthesis and crystal structure of (I).

The asymmetric unit of (I) comprises isolated Ni(en)32+, monoprotonated ethylenediamine cation, and SbSe43− anion (Fig. 1). In the complex cation, the Ni atom is surrounded by six N atoms from three neutral ethylendiamine (en) ligands, that function as a bidentate ligands, forming five-membered chelate rings, with Ni—N bond lengths ranging from 2.108 (3) to 2.130 (3) Å, to give a distorted octahedral environment. The configuration of the en rings in Ni(en)32+ is Λ(δδλ) or Δ(λλδ) according to Saito's description (Saito, 1979). It is noteworthy that the C—C bond distance [C11—C12 = 1.420 (8) Å] in the en ligand with λ conformation is significantly shorter than those [C15—C16 = 1.506 (5) Å and C13—C14 =1.497 (6) Å] in the other two en ligands with δ conformation. A similar situation was found in the configuration of [Fe(en)3]2+ in the compound [enH][Fe(en)3][SbSe4] (Girard & Li, 1998).

The Sb—Se distances of the tetrahedral SbSe43− anion in (I) range from 2.4722 (8) to 2.4810 (11) Å, which are consistent with those found in analogous compounds (Wendland & Bensch, 1998; Sheldrick & Wachhold, 1996). As shown in Fig. 2, the Ni(en)32+ cations and their crystallographic inversion center related species can be considered as constructing cationic slabs along the a and c axes, between which the SbSe43− and protonated ethylenediamine species are located. The protonated H atom is assigned on atom N21 rather than on atom N22 due to the closer cation–anion contact (2.54 Å; Pell & Ibers, 1996). Atom Se2 of the isolated SbSe43− anion acts as a hydrogen-bond acceptor, forming an intermolecular hydrogen bond with the N atom of protonated enH; N21···Se2i = 3.306 (6) Å, H···Se2i =2.54 Å and N21—H···Se2 = 145° [symmetry code: (i) 1 − x, −y, 1 − z].

Experimental top

Single crystals of (I) were grown from methanothermal reaction containing nickel (0.059 g, 1 mmol), antimony (0.122 g, 1 mmol) and selenium (0.237 g, 3 mmol). The reactants were weighed and mixed in a glove-box under a nitrogen atmosphere. The reactants were then loaded into a Teflon-lined steel autoclave and 3 ml of methanol/1,2-ethanediamine (volume ratio = 1:4) was added. The reaction took place at 443 K over a period of 4 d. The product was filtered off and washed with acetone. The title compound is unstable in air, and must be stored under a nitrogen atmosphere.

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, shown with ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The crystal structure of title compound with the intermolecular hydrogen bonds shown as dotted lines.
2-Aminoethylammonium tris(1,2-ethylenediamine)nickel tetraselenoantimonate top
Crystal data top
(C2H9N2)[Ni(C2H8N2)3][SbSe4]F(000) = 704
Mr = 737.72Dx = 2.238 Mg m3
Triclinic, P1Melting point: not measured K
a = 8.829 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.644 (4) ÅCell parameters from 2804 reflections
c = 14.283 (5) Åθ = 3.1–27.5°
α = 104.833 (14)°µ = 8.75 mm1
β = 92.357 (7)°T = 293 K
γ = 109.866 (11)°Chip, orange
V = 1094.7 (7) Å30.06 × 0.04 × 0.03 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
4908 independent reflections
Radiation source: rotating-anode generator3612 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.051
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
h = 1110
Tmin = 0.763, Tmax = 1.000k = 1212
8993 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0138P)2 + 3.5795P]
where P = (Fo2 + 2Fc2)/3
4908 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
(C2H9N2)[Ni(C2H8N2)3][SbSe4]γ = 109.866 (11)°
Mr = 737.72V = 1094.7 (7) Å3
Triclinic, P1Z = 2
a = 8.829 (3) ÅMo Kα radiation
b = 9.644 (4) ŵ = 8.75 mm1
c = 14.283 (5) ÅT = 293 K
α = 104.833 (14)°0.06 × 0.04 × 0.03 mm
β = 92.357 (7)°
Data collection top
Rigaku Mercury CCD
diffractometer
4908 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
3612 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 1.000Rint = 0.051
8993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.00Δρmax = 0.90 e Å3
4908 reflectionsΔρmin = 0.95 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.88076 (3)0.57521 (3)0.728533 (18)0.01907 (7)
Se10.70954 (6)0.67860 (5)0.83730 (3)0.03392 (13)
Se20.89179 (5)0.68547 (4)0.58948 (3)0.02673 (12)
Se30.76314 (5)0.29030 (4)0.66551 (3)0.02875 (12)
Se41.16469 (5)0.66466 (4)0.80946 (3)0.02872 (12)
Ni10.78830 (6)0.81496 (5)1.18377 (3)0.01905 (14)
N110.8183 (5)0.7208 (4)1.2992 (2)0.0414 (12)
H11A0.72780.64071.29830.050*
H11B0.90240.68801.29330.050*
N120.7633 (4)0.9875 (3)1.3006 (2)0.0244 (10)
H12A0.84921.07571.31060.029*
H12B0.67271.00511.28600.029*
N130.5346 (4)0.6946 (4)1.1555 (2)0.0338 (11)
H13A0.51220.59451.15050.041*
H13B0.48690.73331.20480.041*
N140.7324 (4)0.9169 (3)1.0782 (2)0.0270 (10)
H14A0.78051.02001.10030.032*
H14B0.76970.88411.02220.032*
N151.0428 (4)0.9304 (4)1.1925 (3)0.0375 (12)
H15A1.06611.03191.20240.045*
H15B1.09630.91731.24260.045*
N160.8395 (4)0.6441 (3)1.0765 (2)0.0247 (10)
H16A0.80200.55361.09050.030*
H16B0.78900.63161.01720.030*
N210.2727 (4)0.3433 (4)0.5730 (2)0.0349 (12)
H21C0.21470.44380.55450.052*
H21D0.24080.29910.53240.052*
H21E0.25750.30190.63350.052*
N220.5440 (4)0.0812 (4)0.7045 (2)0.0358 (12)
H22C0.48460.13750.73690.043*
H22D0.59790.01490.73240.043*
C110.8503 (7)0.8463 (6)1.3916 (3)0.084 (2)
H11C0.82740.80191.44560.101*
H11D0.96440.91171.40350.101*
C120.7538 (6)0.9371 (5)1.3885 (3)0.0431 (16)
H12C0.79031.02651.44550.052*
H12D0.64140.87751.39080.052*
C130.4719 (6)0.7109 (5)1.0628 (3)0.0400 (15)
H13C0.35530.68621.05850.048*
H13D0.49290.64041.00760.048*
C140.5546 (5)0.8731 (5)1.0600 (3)0.0378 (13)
H14C0.52370.88230.99650.045*
H14D0.52070.94201.10930.045*
C151.0921 (5)0.8648 (4)1.1000 (3)0.0348 (13)
H15C1.20970.89841.10610.042*
H15D1.05460.89941.04850.042*
C161.0187 (5)0.6920 (4)1.0749 (3)0.0336 (13)
H16C1.04020.64641.01040.040*
H16D1.06690.65671.12190.040*
C210.4474 (5)0.3184 (5)0.5710 (3)0.0403 (14)
H21A0.46330.36460.50520.048*
H21B0.48090.36900.61410.048*
C220.5530 (5)0.1482 (5)0.6029 (3)0.0344 (13)
H22A0.66490.13570.59460.041*
H22B0.51610.09570.56260.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.02210 (13)0.01732 (10)0.01813 (12)0.00616 (10)0.00300 (10)0.00695 (9)
Se10.0446 (2)0.03353 (19)0.0307 (2)0.02016 (19)0.01808 (19)0.01101 (17)
Se20.0319 (2)0.02521 (17)0.0230 (2)0.00658 (17)0.00039 (17)0.01253 (15)
Se30.0327 (2)0.01801 (17)0.0321 (2)0.00565 (17)0.00047 (18)0.00694 (16)
Se40.0270 (2)0.02722 (18)0.0290 (2)0.00573 (18)0.00341 (18)0.00994 (17)
Ni10.0200 (2)0.0181 (2)0.0193 (2)0.00649 (19)0.00360 (19)0.00630 (18)
N110.064 (2)0.0453 (17)0.0326 (19)0.0343 (17)0.0109 (17)0.0211 (15)
N120.0284 (18)0.0201 (14)0.0235 (17)0.0080 (14)0.0031 (14)0.0055 (13)
N130.031 (2)0.0279 (17)0.0325 (19)0.0027 (16)0.0083 (16)0.0029 (15)
N140.046 (2)0.0183 (14)0.0192 (16)0.0139 (14)0.0105 (14)0.0050 (12)
N150.031 (2)0.0314 (18)0.043 (2)0.0079 (16)0.0060 (17)0.0027 (16)
N160.0293 (18)0.0248 (15)0.0204 (16)0.0093 (14)0.0031 (14)0.0077 (13)
N210.0252 (19)0.0282 (17)0.039 (2)0.0048 (16)0.0036 (16)0.0033 (16)
N220.0270 (19)0.0296 (17)0.041 (2)0.0035 (16)0.0076 (16)0.0028 (16)
C110.175 (5)0.104 (3)0.027 (3)0.110 (3)0.020 (3)0.027 (2)
C120.062 (3)0.038 (2)0.027 (2)0.016 (2)0.010 (2)0.0095 (19)
C130.034 (2)0.050 (2)0.032 (3)0.023 (2)0.004 (2)0.005 (2)
C140.049 (2)0.049 (2)0.029 (2)0.0360 (19)0.0028 (19)0.0102 (18)
C150.024 (2)0.038 (2)0.042 (2)0.0103 (19)0.0177 (18)0.0095 (19)
C160.037 (2)0.044 (2)0.031 (2)0.0235 (19)0.0116 (18)0.0154 (18)
C210.037 (2)0.047 (2)0.046 (3)0.0313 (19)0.008 (2)0.007 (2)
C220.024 (2)0.043 (2)0.043 (2)0.0162 (18)0.0106 (18)0.0182 (19)
Geometric parameters (Å, º) top
Sb1—Se12.4733 (8)N21—C211.482 (6)
Sb1—Se22.4722 (8)N21—H21C0.8900
Sb1—Se32.4810 (11)N21—H21D0.8900
Sb1—Se42.4791 (9)N21—H21E0.8900
Ni1—N112.123 (4)N22—C221.446 (5)
Ni1—N122.112 (3)N22—H22C0.8600
Ni1—N132.108 (3)N22—H22D0.8600
Ni1—N142.124 (3)C11—C121.420 (8)
Ni1—N152.124 (3)C11—H11C0.9700
Ni1—N162.130 (3)C11—H11D0.9700
N11—C111.485 (5)C12—H12C0.9700
N11—H11A0.9000C12—H12D0.9700
N11—H11B0.9000C13—C141.497 (6)
N12—C121.453 (6)C13—H13C0.9700
N12—H12A0.9000C13—H13D0.9700
N12—H12B0.9000C14—H14C0.9700
N13—C131.481 (6)C14—H14D0.9700
N13—H13A0.9000C15—C161.506 (5)
N13—H13B0.9000C15—H15C0.9700
N14—C141.473 (5)C15—H15D0.9700
N14—H14A0.9000C16—H16C0.9700
N14—H14B0.9000C16—H16D0.9700
N15—C151.464 (5)C21—C221.521 (5)
N15—H15A0.9000C21—H21A0.9700
N15—H15B0.9000C21—H21B0.9700
N16—C161.493 (5)C22—H22A0.9700
N16—H16A0.9000C22—H22B0.9700
N16—H16B0.9000
Se1—Sb1—Se2106.19 (3)C21—N21—H21C109.5
Se1—Sb1—Se3111.96 (3)C21—N21—H21D109.5
Se1—Sb1—Se4111.69 (3)H21C—N21—H21D109.5
Se2—Sb1—Se3109.05 (3)C21—N21—H21E109.5
Se2—Sb1—Se4106.54 (2)H21C—N21—H21E109.5
Se3—Sb1—Se4111.11 (2)H21D—N21—H21E109.5
N11—Ni1—N1281.69 (14)C22—N22—H22C120.0
N11—Ni1—N1393.06 (15)C22—N22—H22D120.0
N11—Ni1—N14172.06 (15)H22C—N22—H22D120.0
N11—Ni1—N1592.68 (15)C12—C11—N11112.0 (4)
N11—Ni1—N1693.78 (14)C12—C11—H11C109.2
N12—Ni1—N1391.47 (13)N11—C11—H11C109.2
N12—Ni1—N1492.27 (13)C12—C11—H11D109.2
N12—Ni1—N1593.87 (13)N11—C11—H11D109.2
N12—Ni1—N16173.05 (13)H11C—C11—H11D107.9
N13—Ni1—N1481.90 (14)C11—C12—N12111.9 (4)
N13—Ni1—N15172.67 (13)C11—C12—H12C109.2
N13—Ni1—N1694.04 (13)N12—C12—H12C109.2
N14—Ni1—N1592.86 (14)C11—C12—H12D109.2
N14—Ni1—N1692.69 (13)N12—C12—H12D109.2
N15—Ni1—N1681.03 (12)H12C—C12—H12D107.9
C11—N11—Ni1106.4 (3)N13—C13—C14109.0 (3)
C11—N11—H11A110.4N13—C13—H13C109.9
Ni1—N11—H11A110.4C14—C13—H13C109.9
C11—N11—H11B110.4N13—C13—H13D109.9
Ni1—N11—H11B110.4C14—C13—H13D109.9
H11A—N11—H11B108.6H13C—C13—H13D108.3
C12—N12—Ni1109.1 (3)N14—C14—C13110.0 (4)
C12—N12—H12A109.9N14—C14—H14C109.7
Ni1—N12—H12A109.9C13—C14—H14C109.7
C12—N12—H12B109.9N14—C14—H14D109.7
Ni1—N12—H12B109.9C13—C14—H14D109.7
H12A—N12—H12B108.3H14C—C14—H14D108.2
C13—N13—Ni1108.4 (3)N15—C15—C16108.6 (3)
C13—N13—H13A110.0N15—C15—H15C110.0
Ni1—N13—H13A110.0C16—C15—H15C110.0
C13—N13—H13B110.0C16—C15—H15D110.0
Ni1—N13—H13B110.0H15C—C15—H15D108.4
H13A—N13—H13B108.4N16—C16—C15109.1 (4)
C14—N14—Ni1108.7 (3)N16—C16—H16C109.9
C14—N14—H14A109.9C15—C16—H16C109.9
Ni1—N14—H14A109.9N16—C16—H16D109.9
C14—N14—H14B109.9C15—C16—H16D109.9
Ni1—N14—H14B109.9H16C—C16—H16D108.3
H14A—N14—H14B108.3N21—C21—C22111.9 (4)
C15—N15—Ni1107.7 (2)N21—C21—H21A109.2
C15—N15—H15A110.2C22—C21—H21A109.2
Ni1—N15—H15A110.2N21—C21—H21B109.2
C15—N15—H15B110.2C22—C21—H21B109.2
Ni1—N15—H15B110.2H21A—C21—H21B107.9
H15A—N15—H15B108.5N22—C22—C21109.9 (4)
C16—N16—Ni1109.8 (2)N22—C22—H22A109.7
C16—N16—H16A109.7C21—C22—H22A109.7
Ni1—N16—H16A109.7N22—C22—H22B109.7
C16—N16—H16B109.7C21—C22—H22B109.7
Ni1—N16—H16B109.7H22A—C22—H22B108.2
H16A—N16—H16B108.2

Experimental details

Crystal data
Chemical formula(C2H9N2)[Ni(C2H8N2)3][SbSe4]
Mr737.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.829 (3), 9.644 (4), 14.283 (5)
α, β, γ (°)104.833 (14), 92.357 (7), 109.866 (11)
V3)1094.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)8.75
Crystal size (mm)0.06 × 0.04 × 0.03
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.763, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8993, 4908, 3612
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.088, 1.00
No. of reflections4908
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.95

Computer programs: CrystalClear (Rigaku, 2002), CrystalClear, SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Sb1—Se12.4733 (8)Ni1—N142.124 (3)
Sb1—Se22.4722 (8)Ni1—N152.124 (3)
Sb1—Se32.4810 (11)Ni1—N162.130 (3)
Sb1—Se42.4791 (9)C11—C121.420 (8)
Ni1—N112.123 (4)C13—C141.497 (6)
Ni1—N122.112 (3)C15—C161.506 (5)
Ni1—N132.108 (3)
Se1—Sb1—Se2106.19 (3)N12—Ni1—N1391.47 (13)
Se1—Sb1—Se3111.96 (3)N12—Ni1—N1492.27 (13)
Se1—Sb1—Se4111.69 (3)N12—Ni1—N1593.87 (13)
Se2—Sb1—Se3109.05 (3)N12—Ni1—N16173.05 (13)
Se2—Sb1—Se4106.54 (2)N13—Ni1—N1481.90 (14)
Se3—Sb1—Se4111.11 (2)N13—Ni1—N15172.67 (13)
N11—Ni1—N1281.69 (14)N13—Ni1—N1694.04 (13)
N11—Ni1—N1393.06 (15)N14—Ni1—N1592.86 (14)
N11—Ni1—N14172.06 (15)N14—Ni1—N1692.69 (13)
N11—Ni1—N1592.68 (15)N15—Ni1—N1681.03 (12)
N11—Ni1—N1693.78 (14)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds