Download citation
Download citation
link to html
The title compound, [Hg2I4(C24H27N2P)2], is found to be a symmetric doubly iodide-bridged dimer, with the phosphine ligands attached trans to the two Hg atoms [Hg—P = 2.4726 (12) Å]. The mol­ecule has a centre of symmetry at the centre of the four-membered ring formed by the two Hg and two bridging I atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803008754/wn6148sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803008754/wn6148Isup2.hkl
Contains datablock I

CCDC reference: 214851

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.030
  • wR factor = 0.076
  • Data-to-parameter ratio = 19.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
ABSTM_02 Alert A Crystal and compound unsuitable for non-numerical corrections. Product of mu and tmid > 3.0 Value of mu given = 8.576 tmid = 0.350
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

Pyridylphosphines continue to generate much interest as excellent ligands for stabilizing many transition-metal coordination and organometallic complexes (Espinet & Soulantica, 1999). One important property of these ligands is that they can stabilize metal ions in a variety of valence states and geometries. Hence, a metal–metal bond between an electron-rich metal (soft base) and a high-oxidation-state metal (Lewis acid) is easily formed (Zhang & Cheng, 1996). Recently, we designed and synthesized a new pyridylphosphine ligand, namely 2-(N-diphenylphosphinomethyl-N-cyclohexylamino)pyridine, L, and obtained a hetero-binuclear complex containing an Fe—Cu bond (Cui et al., 2001). However, when trans-Fe(CO)3L2 is reacted with HgI2, instead of the desired compound containing an Fe—Hg bond, the title compound, (I), was unexpectedly formed.

In (I), each Hg atom is four-coordinated by two bridging I atoms (Fig. 1), [Hg1—I1 2.8035 (4) Å and Hg1—I1A 2.9665 (4) Å], one terminal I atom [Hg1—I2 2.7698 (4) Å] and one P atom from the ligand L [Hg1—P4 2.4726 (12) Å]. There is significant distortion from tetrahedral geometry, the angles about the metal ranging from 94.044 (10) to 127.87 (3)° (Table 1).

The title compound may be compared with the series (PPh3)2Hg2X4 which have the same molecular structure as (I) (X = Cl, Br, I), but with replacement of ligand L by triphenylphosphine (Bell et al., 1980, 1989b; Bowmaker et al., 1993). As in (I), the complex with X = Cl is centrosymmetric, whereas the bromo and iodo complexes are non-centrosymmetric. While the larger Xbr—Hg—Xbr angles (Xbr is bridging halogen) and Hg—X distances in the iodide complex may be readily attributed to the increasing size of the halogen, no ready explanation is available for the substantial asymmetry of the Hg—Xbr distances found in the iodide complex. In contrast to (R3P)2HgX2 complexes, in which the P—Hg—P angle is an effective indicator of the σ-donating ability of both the phosphine and also of the halogen (Allen et al., 1985; Bell et al., 1989a), the P—Hg—Xt angles (Xt is terminal halogen) in the present complex, which might, on the basis of the stronger σ-donor properties of iodide compared to chloride and bromide, have been anticipated to be larger than in the chloride and bromide, are, in fact, very similar. The relative σ-donating ability of the halides is, however, reflected in the Hg—P distance. Thus the significantly larger distance found in the iodide complex may be attributed to the greater σ-donor ability of iodide compared to chloride and bromide.

Experimental top

The synthesis was carried out under an Ar atmosphere. To a solution of trans-Fe(CO)3L2 (0.23 g, 0.25 mmol) was added solid HgI2 (0.11 g, 0.25 mmol). After stirring for 5 min, the solid disappeared. The mixture was filtered and the solvent was removed. The residue was recrystallized from CH2Cl2/CH3OH and gave 0.17 g (85%) of a dark yellow solid.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.96 Å. They were treated as riding atoms, with Uiso(H) = 1.2Ueq(C). The maximum and minimum electron-density peaks are located 0.92 and 0.88 Å from Hg1, respectively.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
(I) top
Crystal data top
[Hg2I4(C24H27N2P)2]F(000) = 1544
Mr = 1657.67Dx = 2.170 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.5386 (7) ÅCell parameters from 634 reflections
b = 16.1113 (9) Åθ = 2.8–25.3°
c = 12.6488 (7) ŵ = 8.58 mm1
β = 96.773 (1)°T = 298 K
V = 2537.4 (2) Å3Plate, dark yellow
Z = 20.40 × 0.35 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5142 independent reflections
Radiation source: fine-focus sealed tube4365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.52, Tmax = 0.96k = 1820
11685 measured reflectionsl = 1115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.249P]
where P = (Fo2 + 2Fc2)/3
5142 reflections(Δ/σ)max = 0.002
271 parametersΔρmax = 1.49 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
[Hg2I4(C24H27N2P)2]V = 2537.4 (2) Å3
Mr = 1657.67Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.5386 (7) ŵ = 8.58 mm1
b = 16.1113 (9) ÅT = 298 K
c = 12.6488 (7) Å0.40 × 0.35 × 0.05 mm
β = 96.773 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5142 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4365 reflections with I > 2σ(I)
Tmin = 0.52, Tmax = 0.96Rint = 0.041
11685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 0.98Δρmax = 1.49 e Å3
5142 reflectionsΔρmin = 1.15 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.880430 (15)1.041510 (12)0.399125 (15)0.04192 (8)
I11.09502 (2)1.09284 (2)0.43945 (3)0.04204 (9)
I20.76220 (3)1.16437 (2)0.48490 (3)0.05642 (11)
P40.79110 (9)0.97287 (7)0.23759 (9)0.0307 (2)
C10.6745 (4)0.9145 (3)0.2708 (4)0.0355 (10)
C20.6396 (4)0.8408 (3)0.2220 (4)0.0459 (12)
H2A0.67880.81720.17170.055*
C30.5470 (4)0.8016 (3)0.2469 (5)0.0543 (14)
H3A0.52580.75130.21500.065*
C40.4868 (5)0.8372 (4)0.3187 (5)0.0582 (15)
H4A0.42380.81190.33390.070*
C50.5203 (5)0.9110 (4)0.3684 (5)0.0667 (17)
H5A0.48020.93470.41800.080*
C60.6130 (4)0.9495 (3)0.3445 (5)0.0518 (14)
H6A0.63470.99920.37780.062*
C70.7313 (4)1.0463 (3)0.1387 (4)0.0342 (10)
C80.7580 (4)1.1301 (3)0.1491 (4)0.0426 (11)
H8A0.80281.14870.20810.051*
C90.7170 (4)1.1857 (3)0.0706 (4)0.0513 (13)
H9A0.73541.24160.07650.062*
C100.6491 (5)1.1579 (4)0.0159 (5)0.0544 (14)
H10A0.62231.19530.06850.065*
C110.6209 (4)1.0764 (4)0.0250 (4)0.0542 (14)
H11A0.57391.05860.08290.065*
C120.6624 (4)1.0195 (3)0.0523 (4)0.0429 (11)
H12A0.64360.96380.04560.051*
C130.8712 (4)0.8974 (3)0.1687 (4)0.0385 (10)
H13A0.84310.84210.17760.046*
H13B0.86240.90980.09310.046*
N10.9852 (3)0.8978 (2)0.2071 (3)0.0414 (9)
C141.0405 (4)0.9670 (3)0.1804 (4)0.0395 (11)
C151.1522 (4)0.9720 (3)0.1824 (5)0.0505 (13)
H15A1.19510.92600.20120.061*
C161.1970 (5)1.0451 (4)0.1562 (5)0.0587 (15)
H16A1.27111.04930.15710.070*
C171.1324 (5)1.1134 (4)0.1283 (5)0.0572 (15)
H17A1.16171.16360.10990.069*
C181.0246 (5)1.1041 (3)0.1287 (4)0.0510 (13)
H18A0.98081.14990.11150.061*
N20.9777 (4)1.0327 (3)0.1526 (4)0.0447 (10)
C191.0409 (4)0.8168 (3)0.2200 (4)0.0369 (10)
H19A1.11140.82750.26000.044*
C201.0618 (4)0.7806 (4)0.1130 (4)0.0500 (13)
H20A0.99400.77020.06970.060*
H20B1.10210.82020.07560.060*
C211.1247 (5)0.7001 (4)0.1290 (5)0.0641 (16)
H21A1.13410.67660.06010.077*
H21B1.19540.71170.16600.077*
C221.0687 (5)0.6387 (4)0.1916 (6)0.073 (2)
H22A1.11250.58910.20320.088*
H22B1.00100.62290.15140.088*
C231.0476 (5)0.6746 (4)0.2985 (5)0.0632 (16)
H23A1.00760.63470.33560.076*
H23B1.11560.68470.34170.076*
C240.9849 (4)0.7550 (3)0.2847 (5)0.0532 (13)
H24A0.91350.74380.24910.064*
H24B0.97740.77840.35410.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.04240 (12)0.04233 (12)0.03901 (12)0.00316 (7)0.00362 (8)0.00396 (8)
I10.04130 (18)0.04217 (18)0.04169 (18)0.00951 (13)0.00087 (13)0.00790 (13)
I20.0576 (2)0.0521 (2)0.0595 (2)0.01379 (16)0.00647 (17)0.01155 (17)
P40.0294 (6)0.0300 (6)0.0323 (6)0.0023 (4)0.0020 (4)0.0003 (4)
C10.034 (2)0.031 (2)0.041 (3)0.0013 (17)0.0018 (19)0.0058 (19)
C20.047 (3)0.043 (3)0.047 (3)0.003 (2)0.003 (2)0.006 (2)
C30.050 (3)0.036 (3)0.074 (4)0.010 (2)0.002 (3)0.004 (3)
C40.047 (3)0.054 (3)0.076 (4)0.010 (3)0.013 (3)0.011 (3)
C50.062 (4)0.072 (4)0.071 (4)0.011 (3)0.032 (3)0.002 (3)
C60.052 (3)0.045 (3)0.063 (4)0.011 (2)0.026 (3)0.010 (3)
C70.029 (2)0.037 (2)0.036 (2)0.0026 (17)0.0052 (18)0.0019 (18)
C80.047 (3)0.036 (3)0.044 (3)0.003 (2)0.001 (2)0.001 (2)
C90.056 (3)0.041 (3)0.057 (3)0.011 (2)0.006 (3)0.011 (3)
C100.066 (4)0.051 (3)0.045 (3)0.016 (3)0.000 (3)0.015 (2)
C110.047 (3)0.068 (4)0.044 (3)0.008 (3)0.009 (2)0.004 (3)
C120.043 (3)0.045 (3)0.039 (3)0.002 (2)0.001 (2)0.002 (2)
C130.031 (2)0.035 (2)0.048 (3)0.0012 (18)0.003 (2)0.011 (2)
N10.031 (2)0.038 (2)0.056 (3)0.0032 (16)0.0064 (18)0.0015 (18)
C140.042 (3)0.037 (3)0.040 (3)0.0002 (19)0.007 (2)0.006 (2)
C150.044 (3)0.045 (3)0.061 (4)0.002 (2)0.005 (3)0.005 (2)
C160.049 (3)0.063 (4)0.069 (4)0.016 (3)0.024 (3)0.013 (3)
C170.073 (4)0.046 (3)0.055 (3)0.017 (3)0.022 (3)0.002 (3)
C180.069 (4)0.043 (3)0.043 (3)0.001 (2)0.016 (3)0.001 (2)
N20.052 (3)0.041 (2)0.042 (2)0.0023 (18)0.0090 (19)0.0026 (18)
C190.033 (2)0.037 (2)0.040 (3)0.0083 (18)0.0047 (19)0.002 (2)
C200.048 (3)0.058 (3)0.043 (3)0.008 (2)0.004 (2)0.009 (2)
C210.069 (4)0.057 (4)0.066 (4)0.017 (3)0.009 (3)0.020 (3)
C220.073 (4)0.041 (3)0.098 (5)0.016 (3)0.024 (4)0.017 (3)
C230.062 (4)0.047 (3)0.080 (4)0.003 (3)0.004 (3)0.019 (3)
C240.048 (3)0.049 (3)0.065 (4)0.004 (2)0.014 (3)0.008 (3)
Geometric parameters (Å, º) top
Hg1—P42.4723 (11)C13—H13A0.9700
Hg1—I22.7699 (4)C13—H13B0.9700
Hg1—I12.8036 (4)N1—C141.376 (6)
Hg1—I1i2.9667 (4)N1—C191.480 (6)
I1—Hg1i2.9667 (4)C14—N21.340 (6)
P4—C71.818 (5)C14—C151.400 (7)
P4—C11.829 (5)C15—C161.364 (8)
P4—C131.858 (5)C15—H15A0.9300
C1—C21.384 (7)C16—C171.387 (9)
C1—C61.397 (7)C16—H16A0.9300
C2—C31.390 (7)C17—C181.361 (8)
C2—H2A0.9300C17—H17A0.9300
C3—C41.373 (9)C18—N21.343 (7)
C3—H3A0.9300C18—H18A0.9300
C4—C51.387 (9)C19—C241.513 (7)
C4—H4A0.9300C19—C201.525 (7)
C5—C61.383 (8)C19—H19A0.9800
C5—H5A0.9300C20—C211.519 (8)
C6—H6A0.9300C20—H20A0.9700
C7—C121.381 (7)C20—H20B0.9700
C7—C81.393 (7)C21—C221.495 (10)
C8—C91.389 (7)C21—H21A0.9700
C8—H8A0.9300C21—H21B0.9700
C9—C101.379 (8)C22—C231.522 (10)
C9—H9A0.9300C22—H22A0.9700
C10—C111.362 (8)C22—H22B0.9700
C10—H10A0.9300C23—C241.515 (8)
C11—C121.394 (8)C23—H23A0.9700
C11—H11A0.9300C23—H23B0.9700
C12—H12A0.9300C24—H24A0.9700
C13—N11.455 (6)C24—H24B0.9700
P4—Hg1—I2115.61 (3)C14—N1—C13115.1 (4)
P4—Hg1—I1127.87 (3)C14—N1—C19119.8 (4)
I2—Hg1—I1105.332 (13)C13—N1—C19117.7 (4)
P4—Hg1—I1i104.03 (3)N2—C14—N1114.0 (4)
I2—Hg1—I1i105.587 (13)N2—C14—C15121.0 (5)
I1—Hg1—I1i94.047 (10)N1—C14—C15124.9 (4)
Hg1—I1—Hg1i85.953 (10)C16—C15—C14119.0 (5)
C7—P4—C1102.5 (2)C16—C15—H15A120.5
C7—P4—C13107.8 (2)C14—C15—H15A120.5
C1—P4—C13105.2 (2)C15—C16—C17120.1 (6)
C7—P4—Hg1112.77 (15)C15—C16—H16A119.9
C1—P4—Hg1109.69 (16)C17—C16—H16A119.9
C13—P4—Hg1117.58 (15)C18—C17—C16117.6 (5)
C2—C1—C6118.3 (5)C18—C17—H17A121.2
C2—C1—P4123.9 (4)C16—C17—H17A121.2
C6—C1—P4117.7 (4)N2—C18—C17123.8 (5)
C1—C2—C3121.1 (5)N2—C18—H18A118.1
C1—C2—H2A119.4C17—C18—H18A118.1
C3—C2—H2A119.4C14—N2—C18118.4 (5)
C4—C3—C2119.9 (5)N1—C19—C24113.4 (4)
C4—C3—H3A120.0N1—C19—C20111.5 (4)
C2—C3—H3A120.0C24—C19—C20111.6 (4)
C3—C4—C5119.9 (5)N1—C19—H19A106.6
C3—C4—H4A120.1C24—C19—H19A106.6
C5—C4—H4A120.1C20—C19—H19A106.6
C6—C5—C4120.1 (6)C21—C20—C19110.4 (5)
C6—C5—H5A119.9C21—C20—H20A109.6
C4—C5—H5A119.9C19—C20—H20A109.6
C5—C6—C1120.6 (5)C21—C20—H20B109.6
C5—C6—H6A119.7C19—C20—H20B109.6
C1—C6—H6A119.7H20A—C20—H20B108.1
C12—C7—C8119.9 (4)C22—C21—C20111.6 (5)
C12—C7—P4120.7 (4)C22—C21—H21A109.3
C8—C7—P4119.4 (4)C20—C21—H21A109.3
C9—C8—C7119.6 (5)C22—C21—H21B109.3
C9—C8—H8A120.2C20—C21—H21B109.3
C7—C8—H8A120.2H21A—C21—H21B108.0
C10—C9—C8120.0 (5)C21—C22—C23111.1 (5)
C10—C9—H9A120.0C21—C22—H22A109.4
C8—C9—H9A120.0C23—C22—H22A109.4
C11—C10—C9120.6 (5)C21—C22—H22B109.4
C11—C10—H10A119.7C23—C22—H22B109.4
C9—C10—H10A119.7H22A—C22—H22B108.0
C10—C11—C12120.2 (5)C24—C23—C22111.4 (5)
C10—C11—H11A119.9C24—C23—H23A109.3
C12—C11—H11A119.9C22—C23—H23A109.3
C7—C12—C11119.8 (5)C24—C23—H23B109.3
C7—C12—H12A120.1C22—C23—H23B109.3
C11—C12—H12A120.1H23A—C23—H23B108.0
N1—C13—P4113.9 (3)C19—C24—C23110.9 (5)
N1—C13—H13A108.8C19—C24—H24A109.5
P4—C13—H13A108.8C23—C24—H24A109.5
N1—C13—H13B108.8C19—C24—H24B109.5
P4—C13—H13B108.8C23—C24—H24B109.5
H13A—C13—H13B107.7H24A—C24—H24B108.0
P4—Hg1—I1—Hg1i111.28 (3)C8—C9—C10—C110.5 (9)
I2—Hg1—I1—Hg1i107.381 (14)C9—C10—C11—C121.4 (9)
I1i—Hg1—I1—Hg1i0.0C8—C7—C12—C110.9 (7)
I2—Hg1—P4—C747.74 (16)P4—C7—C12—C11177.3 (4)
I1—Hg1—P4—C790.34 (16)C10—C11—C12—C70.7 (8)
I1i—Hg1—P4—C7163.01 (16)C7—P4—C13—N1118.3 (4)
I2—Hg1—P4—C165.85 (15)C1—P4—C13—N1132.9 (4)
I1—Hg1—P4—C1156.07 (15)Hg1—P4—C13—N110.5 (4)
I1i—Hg1—P4—C149.42 (15)P4—C13—N1—C1470.9 (5)
I2—Hg1—P4—C13174.06 (19)P4—C13—N1—C19139.0 (4)
I1—Hg1—P4—C1336.0 (2)C13—N1—C14—N219.3 (6)
I1i—Hg1—P4—C1370.67 (19)C19—N1—C14—N2168.8 (4)
C7—P4—C1—C293.4 (4)C13—N1—C14—C15161.7 (5)
C13—P4—C1—C219.2 (5)C19—N1—C14—C1512.2 (7)
Hg1—P4—C1—C2146.6 (4)N2—C14—C15—C160.4 (8)
C7—P4—C1—C682.0 (4)N1—C14—C15—C16178.5 (6)
C13—P4—C1—C6165.4 (4)C14—C15—C16—C170.1 (9)
Hg1—P4—C1—C638.0 (4)C15—C16—C17—C180.3 (9)
C6—C1—C2—C31.2 (8)C16—C17—C18—N21.3 (9)
P4—C1—C2—C3176.6 (4)N1—C14—N2—C18177.8 (5)
C1—C2—C3—C41.9 (8)C15—C14—N2—C181.3 (7)
C2—C3—C4—C51.8 (9)C17—C18—N2—C141.8 (8)
C3—C4—C5—C61.1 (10)C14—N1—C19—C24160.0 (5)
C4—C5—C6—C10.5 (10)C13—N1—C19—C2451.3 (6)
C2—C1—C6—C50.5 (9)C14—N1—C19—C2073.1 (6)
P4—C1—C6—C5176.2 (5)C13—N1—C19—C2075.7 (5)
C1—P4—C7—C1250.6 (4)N1—C19—C20—C21176.7 (4)
C13—P4—C7—C1260.1 (4)C24—C19—C20—C2155.4 (6)
Hg1—P4—C7—C12168.5 (3)C19—C20—C21—C2256.1 (7)
C1—P4—C7—C8131.1 (4)C20—C21—C22—C2356.4 (7)
C13—P4—C7—C8118.2 (4)C21—C22—C23—C2455.7 (7)
Hg1—P4—C7—C813.3 (4)N1—C19—C24—C23178.0 (5)
C12—C7—C8—C91.7 (7)C20—C19—C24—C2355.1 (6)
P4—C7—C8—C9176.5 (4)C22—C23—C24—C1954.9 (7)
C7—C8—C9—C101.0 (8)
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Hg2I4(C24H27N2P)2]
Mr1657.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.5386 (7), 16.1113 (9), 12.6488 (7)
β (°) 96.773 (1)
V3)2537.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)8.58
Crystal size (mm)0.40 × 0.35 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.52, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
11685, 5142, 4365
Rint0.041
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 0.98
No. of reflections5142
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.49, 1.15

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998) and SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Hg1—P42.4723 (11)Hg1—I12.8036 (4)
Hg1—I22.7699 (4)Hg1—I1i2.9667 (4)
P4—Hg1—I2115.61 (3)I2—Hg1—I1i105.587 (13)
P4—Hg1—I1127.87 (3)I1—Hg1—I1i94.047 (10)
I2—Hg1—I1105.332 (13)Hg1—I1—Hg1i85.953 (10)
P4—Hg1—I1i104.03 (3)
Symmetry code: (i) x+2, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds