Download citation
Download citation
link to html
In the title compound, C6H14NO2+·C2HO4-, the leucine mol­ecule exists in the cationic form, with a protonated amino group and an uncharged carboxyl­ic acid group. Oxalic acid exists in the mono-ionized state. Pseudo-inversion centres relate the leucinium cations and semi-oxalate anions. The leucinium and semi-oxalate ions form hydrogen-bonded, double-layered chains, extending parallel to the b axis. The leucinium cations are arranged in these double layers on opposite sides leading to alternating hydro­phobic and hydro­philic layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803011267/wn6161sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803011267/wn6161Isup2.hkl
Contains datablock I

CCDC reference: 214855

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.045
  • wR factor = 0.117
  • Data-to-parameter ratio = 7.4

checkCIF results

No syntax errors found


Amber Alert Alert Level B:
PLAT_111 Alert B ADDSYM Detects (Pseudo) Centre of Symmetry ... 86 Perc Fit PLAT_113 Alert B ADDSYM Suggests Possible Pseudo/New Spacegroup P-1
Yellow Alert Alert Level C:
PLAT_369 Alert C Long C(sp2)-C(sp2) Bond C(31) - C(32) = 1.55 Ang. PLAT_369 Alert C Long C(sp2)-C(sp2) Bond C(41) - C(42) = 1.54 Ang. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 72.00 From the CIF: _reflns_number_total 2003 Count of symmetry unique reflns 2078 Completeness (_total/calc) 96.39% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
2 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Leucine is one of the most important amino acids, essential for the growth and maintenance of living organisms. Simple carboxylic acids, which are believed to have existed in the prebiotic earth (Miller & Orgel, 1974; Kvenvolden et al., 1971), form crystalline complexes with amino acids. The structure elucidation of the title compound, (I), was undertaken as part of a programme of research on complexes of amino acids with dicarboxylic acids. This research in our laboratory aims to study the nature of intermolecular interactions and characteristic aggregation patterns, at atomic resolution. Recently, the crystal structures of sarcosinium oxalate monohydrate (Krishnakumar et al., 1999), glycinium oxalate (Subha Nandhini et al., 2001a), L-and DL-alaninium oxalate (Subha Nandhini et al., 2001b,c), DL-threoninium oxalate (Subha Nandhini et al., 2001), β-alaninium oxalate (Krishnakumar et al., 2002), bis(DL-serinium) oxalate dihydrate (Alagar et al., 2002) and bis(DL-aspartic acid) oxalate (Alagar et al., 2003) have been reported from our laboratory.

Fig. 1 shows the molecular structure with the atom-numbering scheme. The asymmetric unit contains two leucinium cations and two semi-oxalate anions; the former have protonated amino groups and uncharged carboxylic acid groups, the latter each have a neutral carboxylic acid group and a negatively charged carboxylate group. The two cations exibit significant differences in conformation, as do the two anions (Table 1; corresponding angles are listed side-by-side). The semi-oxalate ions are related to each other through a psuedo-inversion centre. Interestingly, the two leucinium cations are also related by a psuedo-inversion centre, ignoring the side chain C atoms. A feature common to the crystal structures of glycinium oxalate, L-alaninium oxalate and (I) is that the shortest cell dimensions are similar, viz. 5.650 (2), 5.630 (1) and 5.674 (3) Å, respectively.

Fig. 2 shows the packing of the molecules of (I), viewed down the a axis. The leucinium and semi-oxalate ions are linked to each other through N—H···O and O—H···O hydrogen bonds. Head-to-tail hydrogen bonds, of type S2, with O12 and O22 of the carboxylic groups as acceptors are present in the structure. The semi-oxalate ions are interconnected by direct O—H···O interactions, forming hydrogen-bonded strings along the shorter cell axis, as observed in many other amino acid–oxalic acid complexes. The leucinium and semi-oxalate ions form hydrogen-bonded double layers. The leucinium cations are arranged in these double layers on opposite sides, leading to alternating hydrophobic and hydrophilic layers. These layers are held together, in addition to van der Waals interactions, by a few short contacts O12···O22 (x + 1, y, z) = 2.893 (4) Å; a carbonyl–carbonyl contact O22···C11 (x − 1, y, z) = 2.989 (5) Å (Allen et al., 1998) and C31···C41 = 3.164 (5) Å. The C—C bond lengths of the semi-oxalate anions, C31—C32 = 1.546 (4) Å and C41—C42 = 1.543 (4) Å, are slightly larger and may be justified by intramolecular O···O steric hindrance. Similar large deviations from normally expected values in C—C bond lengths are also observed in the case of oxalic acid dihydrate (1.537 Å; Ahmed & Cruickshank, 1953) and in the crystal structures of anhydrous α- and β-oxalic acids [1.537 (1) and 1.537 (1) Å, respectively; Derrissen & Smith, 1974].

Experimental top

Colourless plate-shaped single crystals of (I) were grown from a saturated aqueous solution containing L-leucine and oxalic acid in a stoichiometric ratio of 1:1.

Refinement top

All the H atoms were positioned geometrically and were allowed to ride on their respective carrier atoms, with C—H = 0.96 Å, N—H = 0.89 Å, O—H = 0.82 Å and Uiso = 0.05 Å2.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989; cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing of the molecules of (I), viewed down the a axis.
L-Leucinium oxalate top
Crystal data top
C6H14NO2+·C2HO4Z = 2
Mr = 221.21F(000) = 236
Triclinic, P1Dx = 1.375 Mg m3
Dm = 1.39 (3) Mg m3
Dm measured by flotation in a mixture of xylene and CCl4
Hall symbol: P 1Cu Kα radiation, λ = 1.54178 Å
a = 5.674 (3) ÅCell parameters from 25 reflections
b = 9.803 (9) Åθ = 2.8–72°
c = 9.906 (8) ŵ = 1.02 mm1
α = 87.37 (7)°T = 293 K
β = 99.64 (5)°Plate, colourless
γ = 100.35 (6)°0.35 × 0.20 × 0.15 mm
V = 534.3 (7) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
1866 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 72.0°, θmin = 4.6°
ω–2θ scansh = 46
Absorption correction: ψ scan
(North et al., 1968)
k = 1211
Tmin = 0.773, Tmax = 0.858l = 1212
2223 measured reflections2 standard reflections every 60min min
2003 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0934P)2 + 0.031P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2003 reflectionsΔρmax = 0.27 e Å3
272 parametersΔρmin = 0.26 e Å3
3 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (5)
Crystal data top
C6H14NO2+·C2HO4γ = 100.35 (6)°
Mr = 221.21V = 534.3 (7) Å3
Triclinic, P1Z = 2
a = 5.674 (3) ÅCu Kα radiation
b = 9.803 (9) ŵ = 1.02 mm1
c = 9.906 (8) ÅT = 293 K
α = 87.37 (7)°0.35 × 0.20 × 0.15 mm
β = 99.64 (5)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1866 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.773, Tmax = 0.8582 standard reflections every 60min min
2223 measured reflections intensity decay: <2%
2003 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
2003 reflectionsΔρmin = 0.26 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.6308 (5)0.2550 (2)0.5904 (3)0.0628 (7)
H110.66590.33310.55800.094*
O120.3846 (4)0.2159 (2)0.3905 (2)0.0502 (6)
O210.6788 (6)0.1131 (2)0.1400 (3)0.0658 (8)
H210.59550.05280.18020.099*
O220.8599 (4)0.1733 (2)0.3515 (2)0.0473 (5)
O310.7642 (4)0.8191 (2)0.2095 (3)0.0508 (6)
H310.87830.77860.20820.076*
O320.5463 (5)0.6055 (2)0.1970 (3)0.0584 (7)
O330.3719 (4)0.92160 (19)0.2395 (2)0.0445 (5)
O340.1472 (4)0.7104 (2)0.2157 (2)0.0460 (5)
O410.4537 (4)0.5704 (2)0.5233 (2)0.0483 (5)
H410.33800.60900.52670.072*
O420.6609 (4)0.7870 (2)0.5320 (3)0.0520 (6)
O430.8545 (4)0.4770 (2)0.4831 (3)0.0501 (6)
O441.0744 (4)0.6853 (2)0.5317 (2)0.0445 (5)
N110.1556 (5)0.0283 (2)0.4688 (3)0.0444 (6)
H11A0.09060.10840.50460.067*
H11B0.22020.04480.39660.067*
H11C0.04080.02290.44270.067*
N211.1085 (5)0.4117 (2)0.2699 (3)0.0442 (6)
H21A1.19600.48360.23250.066*
H21B1.20640.36840.32970.066*
H21C1.00200.44160.31280.066*
C110.4550 (6)0.1830 (3)0.5069 (3)0.0424 (6)
C120.3478 (6)0.0474 (3)0.5730 (3)0.0419 (7)
H120.47550.00860.59960.050*
C130.2465 (6)0.0767 (3)0.7010 (3)0.0485 (7)
H13A0.37210.13740.75960.058*
H13B0.11280.12640.67270.058*
C140.1571 (6)0.0505 (3)0.7853 (3)0.0510 (8)
H140.02810.11070.72630.061*
C150.0470 (9)0.0023 (5)0.9027 (4)0.0748 (12)
H15A0.01130.08130.95650.112*
H15B0.08540.04400.86530.112*
H15C0.16880.06040.95950.112*
C160.3528 (8)0.1329 (4)0.8400 (4)0.0687 (10)
H16A0.28600.21200.89090.103*
H16B0.48060.07590.89890.103*
H16C0.41680.16350.76510.103*
C210.8314 (6)0.1932 (3)0.2297 (3)0.0417 (6)
C220.9758 (6)0.3135 (3)0.1601 (3)0.0405 (6)
H221.09660.27730.11850.049*
C230.8240 (6)0.3867 (3)0.0483 (3)0.0463 (7)
H23A0.72630.43800.09120.056*
H23B0.71360.31680.00840.056*
C240.9670 (7)0.4868 (3)0.0449 (3)0.0518 (8)
H241.08740.55330.01260.062*
C250.7928 (10)0.5656 (5)0.1354 (4)0.0753 (12)
H25A0.71180.61290.07930.113*
H25B0.67490.50190.19330.113*
H25C0.88130.63200.19100.113*
C261.0985 (9)0.4118 (5)0.1313 (5)0.0764 (12)
H26A1.18680.47790.18720.115*
H26B0.98250.34670.18880.115*
H26C1.20950.36330.07250.115*
C310.5642 (5)0.7285 (3)0.2061 (3)0.0366 (6)
C320.3423 (5)0.7946 (3)0.2207 (3)0.0357 (6)
C410.6513 (5)0.6642 (3)0.5247 (3)0.0362 (6)
C420.8774 (5)0.6016 (3)0.5124 (3)0.0360 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0683 (16)0.0460 (13)0.0585 (13)0.0266 (11)0.0061 (12)0.0024 (10)
O120.0443 (13)0.0377 (11)0.0622 (14)0.0047 (10)0.0066 (10)0.0113 (10)
O210.0841 (19)0.0412 (12)0.0564 (13)0.0303 (12)0.0111 (12)0.0005 (10)
O220.0452 (12)0.0398 (11)0.0521 (12)0.0046 (9)0.0093 (9)0.0072 (9)
O310.0326 (11)0.0369 (11)0.0805 (16)0.0050 (9)0.0140 (10)0.0018 (10)
O320.0457 (13)0.0322 (12)0.0991 (19)0.0014 (10)0.0247 (13)0.0055 (11)
O330.0448 (13)0.0276 (9)0.0591 (12)0.0038 (9)0.0130 (10)0.0033 (8)
O340.0332 (11)0.0321 (10)0.0695 (13)0.0077 (8)0.0133 (9)0.0021 (9)
O410.0314 (11)0.0366 (11)0.0732 (15)0.0054 (9)0.0096 (10)0.0031 (9)
O420.0441 (13)0.0324 (11)0.0783 (15)0.0007 (9)0.0126 (11)0.0012 (9)
O430.0426 (12)0.0281 (10)0.0788 (15)0.0054 (9)0.0188 (10)0.0043 (9)
O440.0320 (11)0.0315 (10)0.0666 (12)0.0064 (8)0.0107 (9)0.0003 (8)
N110.0543 (16)0.0271 (11)0.0479 (13)0.0068 (10)0.0123 (11)0.0002 (9)
N210.0478 (14)0.0271 (11)0.0507 (13)0.0093 (10)0.0063 (11)0.0037 (9)
C110.0386 (16)0.0296 (13)0.0559 (16)0.0067 (11)0.0121 (12)0.0004 (11)
C120.0446 (17)0.0257 (12)0.0518 (15)0.0048 (11)0.0101 (12)0.0001 (11)
C130.0530 (19)0.0387 (15)0.0516 (16)0.0050 (13)0.0152 (13)0.0047 (12)
C140.053 (2)0.0463 (16)0.0460 (15)0.0133 (14)0.0099 (13)0.0013 (12)
C150.073 (3)0.088 (3)0.062 (2)0.005 (2)0.0296 (19)0.0040 (19)
C160.077 (3)0.063 (2)0.059 (2)0.000 (2)0.0081 (18)0.0150 (16)
C210.0427 (16)0.0273 (12)0.0516 (15)0.0035 (11)0.0086 (12)0.0016 (10)
C220.0441 (16)0.0271 (12)0.0470 (14)0.0059 (11)0.0115 (12)0.0001 (10)
C230.0455 (17)0.0377 (14)0.0496 (15)0.0043 (12)0.0050 (12)0.0058 (11)
C240.060 (2)0.0411 (15)0.0444 (15)0.0122 (14)0.0032 (14)0.0035 (11)
C250.096 (3)0.061 (2)0.061 (2)0.006 (2)0.005 (2)0.0207 (17)
C260.073 (3)0.092 (3)0.065 (2)0.008 (2)0.024 (2)0.016 (2)
C310.0331 (14)0.0313 (12)0.0415 (13)0.0043 (10)0.0064 (10)0.0019 (10)
C320.0356 (15)0.0302 (13)0.0379 (13)0.0046 (11)0.0076 (10)0.0000 (10)
C410.0369 (15)0.0305 (13)0.0376 (12)0.0031 (11)0.0055 (10)0.0000 (10)
C420.0325 (14)0.0285 (12)0.0427 (13)0.0062 (11)0.0074 (10)0.0029 (10)
Geometric parameters (Å, º) top
O11—C111.304 (4)C13—H13A0.9700
O11—H110.8200C13—H13B0.9700
O12—C111.205 (4)C14—C161.504 (6)
O21—C211.311 (4)C14—C151.537 (6)
O21—H210.8200C14—H140.9800
O22—C211.202 (4)C15—H15A0.9600
O31—C311.306 (4)C15—H15B0.9600
O31—H310.8200C15—H15C0.9600
O32—C311.198 (4)C16—H16A0.9600
O33—C321.244 (4)C16—H16B0.9600
O34—C321.251 (4)C16—H16C0.9600
O41—C411.315 (3)C21—C221.518 (4)
O41—H410.8200C22—C231.521 (4)
O42—C411.200 (4)C22—H220.9800
O43—C421.247 (4)C23—C241.535 (4)
O44—C421.254 (3)C23—H23A0.9700
N11—C121.486 (4)C23—H23B0.9700
N11—H11A0.8900C24—C251.513 (6)
N11—H11B0.8900C24—C261.516 (6)
N11—H11C0.8900C24—H240.9800
N21—C221.497 (4)C25—H25A0.9600
N21—H21A0.8900C25—H25B0.9600
N21—H21B0.8900C25—H25C0.9600
N21—H21C0.8900C26—H26A0.9600
C11—C121.526 (4)C26—H26B0.9600
C12—C131.535 (4)C26—H26C0.9600
C12—H120.9800C31—C321.546 (4)
C13—C141.525 (4)C41—C421.543 (4)
C11—O11—H11109.5H16A—C16—H16C109.5
C21—O21—H21109.5H16B—C16—H16C109.5
C31—O31—H31109.5O22—C21—O21125.0 (3)
C41—O41—H41109.5O22—C21—C22123.6 (3)
C12—N11—H11A109.5O21—C21—C22111.4 (3)
C12—N11—H11B109.5N21—C22—C21107.1 (2)
H11A—N11—H11B109.5N21—C22—C23111.3 (2)
C12—N11—H11C109.5C21—C22—C23114.3 (3)
H11A—N11—H11C109.5N21—C22—H22108.0
H11B—N11—H11C109.5C21—C22—H22108.0
C22—N21—H21A109.5C23—C22—H22108.0
C22—N21—H21B109.5C22—C23—C24115.7 (3)
H21A—N21—H21B109.5C22—C23—H23A108.4
C22—N21—H21C109.5C24—C23—H23A108.4
H21A—N21—H21C109.5C22—C23—H23B108.4
H21B—N21—H21C109.5C24—C23—H23B108.4
O12—C11—O11125.3 (3)H23A—C23—H23B107.4
O12—C11—C12122.7 (3)C25—C24—C26110.5 (3)
O11—C11—C12111.9 (3)C25—C24—C23108.6 (3)
N11—C12—C11107.7 (2)C26—C24—C23112.0 (3)
N11—C12—C13111.6 (3)C25—C24—H24108.5
C11—C12—C13110.4 (2)C26—C24—H24108.5
N11—C12—H12109.1C23—C24—H24108.5
C11—C12—H12109.1C24—C25—H25A109.5
C13—C12—H12109.1C24—C25—H25B109.5
C14—C13—C12115.7 (3)H25A—C25—H25B109.5
C14—C13—H13A108.3C24—C25—H25C109.5
C12—C13—H13A108.3H25A—C25—H25C109.5
C14—C13—H13B108.3H25B—C25—H25C109.5
C12—C13—H13B108.3C24—C26—H26A109.5
H13A—C13—H13B107.4C24—C26—H26B109.5
C16—C14—C13113.1 (3)H26A—C26—H26B109.5
C16—C14—C15110.8 (3)C24—C26—H26C109.5
C13—C14—C15108.4 (3)H26A—C26—H26C109.5
C16—C14—H14108.1H26B—C26—H26C109.5
C13—C14—H14108.1O32—C31—O31125.8 (3)
C15—C14—H14108.1O32—C31—C32121.1 (3)
C14—C15—H15A109.5O31—C31—C32113.1 (2)
C14—C15—H15B109.5O33—C32—O34126.4 (3)
H15A—C15—H15B109.5O33—C32—C31119.0 (2)
C14—C15—H15C109.5O34—C32—C31114.5 (2)
H15A—C15—H15C109.5O42—C41—O41125.1 (3)
H15B—C15—H15C109.5O42—C41—C42121.7 (3)
C14—C16—H16A109.5O41—C41—C42113.2 (2)
C14—C16—H16B109.5O43—C42—O44125.2 (3)
H16A—C16—H16B109.5O43—C42—C41120.0 (2)
C14—C16—H16C109.5O44—C42—C41114.8 (2)
O12—C11—C12—N110.6 (4)O22—C21—C22—N2112.2 (4)
O11—C11—C12—N11178.3 (3)O21—C21—C22—N21169.6 (3)
O12—C11—C12—C13121.4 (3)O22—C21—C22—C23135.9 (3)
O11—C11—C12—C1359.7 (4)O21—C21—C22—C2345.9 (4)
N11—C12—C13—C1466.4 (4)N21—C22—C23—C2471.3 (4)
C11—C12—C13—C14174.0 (3)C21—C22—C23—C24167.2 (3)
C12—C13—C14—C1660.5 (4)C22—C23—C24—C25171.7 (3)
C12—C13—C14—C15176.2 (3)C22—C23—C24—C2666.0 (4)
O32—C31—C32—O33175.0 (3)O42—C41—C42—O43168.5 (3)
O31—C31—C32—O333.0 (4)O41—C41—C42—O4310.1 (4)
O32—C31—C32—O343.0 (4)O42—C41—C42—O4410.4 (4)
O31—C31—C32—O34179.0 (3)O41—C41—C42—O44170.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O430.821.822.593 (4)157
O21—H21···O33i0.821.792.600 (4)169
O31—H31···O34ii0.821.762.578 (3)173
O41—H41···O44iii0.821.802.616 (3)177
N11—H11A···O44iv0.892.022.820 (4)150
N11—H11B···O33i0.891.972.856 (4)178
N11—H11C···O22iii0.892.042.898 (4)162
N21—H21A···O32ii0.892.203.013 (4)152
N21—H21B···O12ii0.891.972.795 (4)154
N21—H21C···O430.892.072.902 (4)155
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC6H14NO2+·C2HO4
Mr221.21
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.674 (3), 9.803 (9), 9.906 (8)
α, β, γ (°)87.37 (7), 99.64 (5), 100.35 (6)
V3)534.3 (7)
Z2
Radiation typeCu Kα
µ (mm1)1.02
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.773, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
2223, 2003, 1866
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 1.04
No. of reflections2003
No. of parameters272
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: CAD-4 Software (Enraf-Nonius, 1989, CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected torsion angles (º) top
O12—C11—C12—N110.6 (4)O22—C21—C22—N2112.2 (4)
O11—C11—C12—N11178.3 (3)O21—C21—C22—N21169.6 (3)
O12—C11—C12—C13121.4 (3)O22—C21—C22—C23135.9 (3)
O11—C11—C12—C1359.7 (4)O21—C21—C22—C2345.9 (4)
N11—C12—C13—C1466.4 (4)N21—C22—C23—C2471.3 (4)
C11—C12—C13—C14174.0 (3)C21—C22—C23—C24167.2 (3)
C12—C13—C14—C1660.5 (4)C22—C23—C24—C25171.7 (3)
C12—C13—C14—C15176.2 (3)C22—C23—C24—C2666.0 (4)
O32—C31—C32—O33175.0 (3)O42—C41—C42—O43168.5 (3)
O31—C31—C32—O333.0 (4)O41—C41—C42—O4310.1 (4)
O32—C31—C32—O343.0 (4)O42—C41—C42—O4410.4 (4)
O31—C31—C32—O34179.0 (3)O41—C41—C42—O44170.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O430.821.822.593 (4)157
O21—H21···O33i0.821.792.600 (4)169
O31—H31···O34ii0.821.762.578 (3)173
O41—H41···O44iii0.821.802.616 (3)177
N11—H11A···O44iv0.892.022.820 (4)150
N11—H11B···O33i0.891.972.856 (4)178
N11—H11C···O22iii0.892.042.898 (4)162
N21—H21A···O32ii0.892.203.013 (4)152
N21—H21B···O12ii0.891.972.795 (4)154
N21—H21C···O430.892.072.902 (4)155
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x1, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds